The Axial Form Factor Extracted from Elementary Targets

Aaron S. Meyer (asmeyer.physics@gmail.com)

Lawrence Livermore National Laboratory

September 14, 2024

Super Bigbite Spectrometer Collaboration Meeting

This work is supported in part by: Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250.

Outline

- Neutrino Oscillation Introduction
- Deuterium Bubble Chamber Fits
- ▶ Lattice QCD Axial Form Factor Computations
- ▶ MINER *ν*A Hydrogen/Deuterium Comparisons
- ► Conclusions

Note: all references in online slides are [hyperlinked]

From this collab meeting, see also:

- [Kordosky Friday 10:30am]
- [Napolitano Friday 11:10am]
- [Napolitano Saturday 8:30am]

Introduction

Neutrino Oscillation

Neutrino oscillation: ν spontaneously change flavor

Parameters of oscillation not completely known

 $\implies \delta_{CP}?, m_3 > m_{1,2}?$

Upcoming flagship accelerator experiments

- \implies DUNE, HyperK
- \implies Measure oscillation probability

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

far/near \implies oscillation probability, assuming we can get E_{ν} dependence correct...

Neutrino Event Topologies

- "Large" nucleus (A > 10)
 - \implies more nucleons to interact with
 - \implies target material = detector

Nuclear environment complicates measurements:

- Many allowed kinematic channels
- Reinteractions within nucleus
- Only final state particles are observable

Cannot isolate E_{ν} event-by-event

- $\implies E_{\nu}$ reconstructed from Monte Carlo distributions
- \implies need precise & accurate *nuclear* models built with *nucleon* amplitudes

Neutrino Cross Sections from Elementary Targets

Quasielastic is lowest E_{ν} , simplest \implies most important

Question:

How well do we know free nucleon quasielastic cross section from elementary target sources?

Three main sources:

► Hydrogen scattering
► Deuterium scattering
► Lattice QCD

Deuterium Fits

Quasielastic Scattering

Simplest topology, lowest E_{ν} – nucleon scatters elastically with neutrino

Nucleon response described by *form factors*:

- ▶ F_1, F_2 : vector form factors, constrained by eN scattering
- F_P: "induced pseudoscalar" form factor, subleading in cross section related to F_A by pion pole dominance constraint
- ▶ F_A : axial form factor

Nucleon cross section uncertainty dominated by axial form factor F_A

Form Factor Parameterizations

Dipole model ansatz —

$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by data
- ▶ Inconsistent with QCD
- \blacktriangleright Motivated by $Q^2 \rightarrow \infty$ limit, data restricted to low Q^2
- z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- ▶ |z| < 1, bounded $|a_k| \implies$ rapid convergence
- Controlled procedure for introducing new parameters
- $\blacktriangleright\,$ Optional sum rule constraints regulate large- Q^2 behavior

Deuterium Constraints on F_A

with M. Betancourt, R. Gran, R. Hill

[Phys.Rev.D 93 (2016)]

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu}$ QE events
 - Digitized event distributions only
 - Unknown corrections to data
 - Substantial uncertainty in/about flux
 - Deficient deuterium correction
- Dipole overconstrained by data, underestimated uncertainty ×10

Deuterium Constraints on F_A

with M. Betancourt, R. Gran, R. Hill

[Phys.Rev.D 93 (2016)]

Conclusions about discrepancies depend on parameterization:

▶ Dipole –

- \implies form factor uncertainty small
- \implies discrepancies from *nuclear* only
- > z expansion
 - \implies form factor uncertainty sizeable
 - $\implies \mbox{discrepancies could be} \\ nucleon form factors and/or \\ nuclear modeling$

Dipole uncertainty unrealistically small – nucleon form factor not as precise as historical claims

LQCD Survey and Implications

What is Lattice Quantum Chromodynamics (LQCD)?

LQCD is the only known mathematically rigorous method to compute properties of hadrons in nonperturbative QCD

Constructed from **quark and gluon** degrees of freedom

After removing systematic biases, predictions of QCD (not an approximation!)

- $\checkmark~$ Complementary to experiment
- $\checkmark~$ Controlled nuclear effects
- $\checkmark~$ Realistic, robust uncertainty estimates
- $\checkmark~$ Systematically improvable
- $\checkmark~$ Computers are (relatively) in expensive

Lattice QCD Formalism

Numerical evaluation of path integral

Parameters: $am_{(u,d),\text{bare}}$ masses $am_{s,\text{bare}}$ coupling $\beta = 6/g_{\text{bare}}^2$ coupling Matching: e.g. $\frac{M_{\pi}}{M_{\Omega}}, \frac{M_K}{M_{\Omega}}, M_{\Omega}$ experiment 1 per parameter

Results — first principles predictions from QCD, gluons to all orders

Each gauge ensemble generated with fixed $a, L/a, aM_{\pi}...$

"Complete" error budget \implies extrapolation in a, L, M_{π} guided by EFT, FV χ PT

- $a \to 0$ (continuum limit)
- $L \to \infty$ (infinite volume limit)
- $M_{\pi} \to M_{\pi}^{\text{phys}}$ (chiral limit)

Successes of Lattice QCD

- $\blacktriangleright \lesssim 5$ inputs, (very) many predictions \blacktriangleright Heavily constrained by standard model
- ▶ Widely used in flavor physics (CKM matrix elements)

Axial Form Factor from LQCD

LQCD results maturing:

- ▶ Many results, all physical M_{π} : independent "data" & different methods
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- Subject to nontrivial consistency checks from PCAC

LQCD prediction of slow Q^2 falloff, situation unlikely to change drastically

Free Nucleon Cross Section

If LQCD form factor correct, implies big changes —

Integrate over Q^2 to get QE cross section $\sigma(E_{\nu})$

- \implies high- Q^2 discrepancy enhances cross section 30–40%!
- \implies recent Monte Carlo tunes prefer ${\sim}20\%$ enhancement of QE

[Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]

Free Nucleon Cross Section

If LQCD form factor correct, implies big changes —

Integrate over Q^2 to get QE cross section $\sigma(E_{\nu})$ \implies high- Q^2 discrepancy enhances cross section 30–40%! \implies recent Monte Carlo tunes prefer ~20% enhancement of QE

[Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]

Current-generation LQCD about $\times 2$ more precise than νD scattering

Free Nucleon Cross Section

If LQCD form factor correct, implies big changes —

Integrate over Q^2 to get QE cross section $\sigma(E_{\nu})$

- \implies high- Q^2 discrepancy enhances cross section 30–40%!
- \implies recent Monte Carlo tunes prefer ${\sim}20\%$ enhancement of QE

[Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]

Current-generation LQCD about $\times 2$ more precise than νD scattering LQCD precision small enough to be sensitive to vector form factor discrepancies

T2K Implications

Insert new form factor into Monte Carlo event generator Convolve with realistic flux, nuclear model; compute neutrino event rates

Dashed dark blue (GENIE nominal) vs solid magenta (z exp LQCD fit) E_{ν} -dependent event rate changes, different for near/far detectors

 \implies Potential source of bias – caution!

DUNE Implications

Insert new form factor into Monte Carlo event generator Convolve with realistic flux, nuclear model; compute neutrino event rates

Solid dark blue (GENIE nominal) vs dashed magenta ($z \exp LQCD$ fit) Similar story, different E_{ν} dependence \implies different potential bias Moving target \implies other topologies adjusted to soften QE changes

Combined Hydrogen–Deuterium Fits

Hydrogen vs Deuterium

Work done with MINER ν A collaboration on published data Special thanks: Tejin Cai, Kevin McFarland, Miriam Moore

MINER ν A result for $\overline{\nu}$ -p scattering in plastic scintillator

Test consistency between hydrogen, deuterium fit together

Some visible disagreements between hydrogen, deuterium \implies how does this manifest in combined fit?

Inner band	-	uncertainty from axial only
Outer band	_	uncertainty from axial + vector [Phys.Rev.D 102 (2020)

Cut low Q^2 in deuterium to avoid systematics (nominal $Q^2_{\min} = 0.20 \text{ GeV}^2$)

Degeneracy between cross section normalization and axial form factor in deuterium fits \implies strong dependence on Q^2_{\min} , suppressed by regularization in [Phys.Rev.D 93 (2016)]

Isotope Fit Comparisons

Tension in fits:

$$\Delta\chi^2 = \chi^2_{\rm H+D} - \chi^2_{\rm D} - \chi^2_{\rm H} \approx 8.8 \quad \Longrightarrow \quad \Delta\chi^2 \ / \ 1 \ {\rm DoF} \ {\rm yields} \ p - {\rm Value} \approx 3.0 \times 10^{-3} \, {\rm J}^2_{\rm H} = 10^{-$$

Test compatibility by fixing axial parameters (marginalize deuterium nuisance parameters):

	$\{a_k\}_{\mathrm{D}}$	$p_{ m D}$	$\{a_k\}_{\mathrm{H}}$	$p_{ m H}$
$\chi^2_{ m D}/{ m DoF_D}$	94.9/94	0.45	167.7/96	8.3×10^{-6}
$\chi^2_{ m H}/{ m DoF_{ m H}}$	23.3/15	0.08	10.0/13	0.69

Deuterium is incompatible with hydrogen, LQCD

Concluding Remarks

Comparison Summary

Quasielastic $F_A(Q^2)$ critical for success of accelerator neutrino oscillation experiments Ongoing work to combine all sources of axial form factor constraint Uncertainty historically underestimated by factor of 10 —

$$\implies F_A(Q^2)$$
 at $Q^2 = 1 \text{ GeV}^2$ known at 20–25% level \implies Tensions at > 50% level

 $Potential \ for \ high-impact \ tie-breaking \ result$

Thank you for your attention!

Electro Pion Production

- Large model uncertainty, not included in world averages
- Valid only in $M_{\pi} \to 0, q \to 0$ limits
- Expansion to $O(M_{\pi}^2, Q^2)$:
 - restricted Q^2 validity
 - lacks shape freedom in Q^2
- Predates Heavy Baryon χPT, no systematic power counting

Modern experiments do not report $F_A(Q^2) \implies$ averages out of date Possible argument for comparing to r_A^2 from low Q^2 ; high Q^2 untrustworthy Effort needed to update prediction from photo/electro pion production

Vector Form Factors - Proton/Neutron

Large tension in proton magnetic form factor

Vector Form Factors - Isospin Symmetric

Uncertain slope of F_2^V

Large uncertainty on isoscalar form factors

Aaron S. Meyer

Section: Backup

Cumulative Updates to Deuterium

Cumulative changes between fits

 \implies moving down legend labels, fits include same modifications as fits above them

Fits all 1σ consistent until regularization removed

 $Q^2 \mbox{ cut emphasizes axial form factor + normalization degeneracy}$

PCAC Checks

- ▶ Relation btw F_A , F_P , \tilde{F}_P via PCAC
- Contamination in F_A and \tilde{F}_P , F_P very different \implies nontrivial consistency check
 - ➢ HOHTIVIAI CONSISTENCY CH [Phys.Rev.D 99 (2019)]

LQCD Excited States — χPT and $N\pi$

Contamination in $g_A(Q^2)$ primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to $N\pi$ [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies:

- explicit $N\pi$ operators
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration of $N\pi$: [Phys.Rev.Lett. 124 (2020)]

 $\chi \mathrm{PT}\text{-inspired}$ fit methods for fitting form factor data

[Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

• Kinematic constraints $(F_P = 0)$

Energy Regimes

LQCD Computation Anatomy

Correlation functions in euclidean time: $\implies e^{-E_n t}$ decay of excited state contribs

 $\begin{array}{l} \text{2-point function} \\ \langle \blacktriangle(t) \blacksquare(0) \rangle = \sum_n \langle 0 | \blacktriangle | n \rangle \langle n | \blacksquare | 0 \rangle e^{-E_n t} \end{array}$

3-point function

$$\langle \mathbf{A}(t) \otimes (\tau) \mathbf{I}(0) \rangle = \sum_{mn} \langle 0 | \mathbf{A} | n \rangle \langle n | \otimes | m \rangle \langle m | \mathbf{I} | 0 \rangle e^{-E_n (t-\tau) - E_m \tau}$$

Extract masses from 2-point, matrix elements from 3-point

Complications:

- \blacktriangleright exponentially degrading signal/noise with t
- n > 0 contaminations from excited states

Use many source/sink operators $(\blacksquare, \blacktriangle)$ to suppress excited states:

$$C_{ij}(t) = \sum_{n} z_{i,n} z_{j,n}^{\dagger} e^{-E_n t} \quad \Longrightarrow \quad v^T C(t) v \approx e^{-E_0 t} \quad \text{when} \quad \sum_{i} v_i^T z_{i,n} \approx \delta_{0,n}$$

Fit Setup

Fit exponential dependence of axial "3-point" functions:

$$\begin{split} C_{\mathcal{A}_{z}}^{\text{3pt}}(t,\tau,\mathbf{q}) &= \langle \mathcal{N}(\mathbf{0},t)\mathcal{A}_{z}(\mathbf{q},\tau)\overline{\mathcal{N}}(-\mathbf{q},0)\rangle \\ &\sim \sum_{mn} z_{n}^{\mathbf{0}} A_{nm}^{\mathbf{q}} z_{m}^{\mathbf{q}\dagger} e^{-E_{n}^{\mathbf{0}}(t-\tau)} e^{-E_{m}^{\mathbf{q}}\tau} \end{split}$$

Towers of excited states m, n depend on momenta injected Current \mathcal{A}_z couples to axial, induced pseudoscalar form factors

Overlaps, energies constrained by "2-point" functions

$$C^{2\mathrm{pt}}(t,\mathbf{q}) = \langle \mathcal{N}(\mathbf{q},t)\overline{\mathcal{N}}(-\mathbf{q},0) \rangle \sim \sum_{m} z_{m}^{\mathbf{q}} \, z_{m}^{\mathbf{q}\dagger} \, e^{-E_{m}^{\mathbf{q}}t}$$

Fit Setup

Plot ratio correlator:

$$\mathcal{R}_{\mathcal{A}_{z}}(t,\tau,\mathbf{q}) = \frac{C_{\mathcal{A}_{z}}^{3\mathrm{pt}}(t,\tau,\mathbf{q})}{\sqrt{C^{2\mathrm{pt}}(t-\tau,\mathbf{0})C^{2\mathrm{pt}}(\tau,\mathbf{q})}} \sqrt{\frac{C^{2\mathrm{pt}}(\tau,\mathbf{0})}{C^{2\mathrm{pt}}(t,\mathbf{0})}} \frac{C^{2\mathrm{pt}}(t-\tau,\mathbf{q})}{C^{2\mathrm{pt}}(t,\mathbf{q})}}$$

$$\xrightarrow[t-\tau,\tau\to\infty]{} \frac{1}{\sqrt{2E_0^{\mathbf{q}}(E_0^{\mathbf{q}}+M)}} \left[-\frac{q_z^2}{2M} \mathring{F}_P(Q^2) + (E_0^{\mathbf{q}}+M) \mathring{F}_A(Q^2) \right]$$

 $Q^2 = |{\bf q}|^2 - (E_0^{\bf q} - M)^2$

$$\mathcal{A}_z \text{ with } q_z = 0 \implies \mathcal{R}_{\mathcal{A}_z}(t,\tau,\mathbf{q}) \to \sqrt{\frac{E_{\mathbf{q}}^{\mathbf{q}} + M}{2E_{\mathbf{q}}^{\mathbf{q}}}} \mathring{g}_{\mathcal{A}}(Q^2)$$

- \implies No induced pseudoscalar
- \implies Simplified analysis of $\mathring{F}_A(Q^2) = \mathring{g}_A(Q^2)$
- \implies a12m130 ensemble only, $N_{state} = 3$ only

Correlation Function Ratio

- ▶ Color: source-sink separation time
- ▶ Colored bands: fit

- Gray band: \mathring{g}_A posterior value
- ▶ Curvature: excited state contamination

$\mathring{g}_A(Q^2)$ Correlators

Aaron S. Meyer

Section: Backup

Axial Form Factor Fit

Trend of high- Q^2 enhancement seen in other LQCD results 2–4% LQCD uncertainty vs 10% uncertainty on D₂ result

TODO list:

- $qL/2\pi = (1, 0, 0)$ matrix element larger than expectation
- Deep dive into excited states systematics, prior dependence
- More momenta, $q_z \neq 0$, full set of ensembles