Status of G_M^n , G_E^n analysis

Andrew Puckett University of Connecticut SBS Collaboration Meeting 9/12/2024

Acknowledgements

- This work supported in part by DOE Office of Science, Office of Nuclear Physics, award DE-SC0021200
- SBS Collaboration
- Materials/photos/analysis in this talk provided by:
 - Arun Tadepalli, Mark Jones, Bogdan Wojtsekhowski, Robin Wines, Eric Fuchey, Gordon Cates, David Hamilton, etc.
 - GMN analysis results/plots provided by GMN/nTPE thesis students: Provakar Datta, Sebastian Seeds, Anuruddha Rathnayake, Maria Satnik, Zeke Wertz, John Boyd *et al.*
 - GEN analysis results/plots from GEN thesis students: Faraz Chahili Kate Evans, Jack Jackson, Sean Jeffas, Gary Penman, Hunter Presley, *et al.*
- And many others...

Outline

- Overview of SBS neutron form factor experiments—apparatus, physics observables, methodology
- Overview of SBS software infrastructure
 - Monte Carlo simulation
 - Event reconstruction
 - Data analysis: detector calibration tools, physics analysis tools, Monte Carlo event generators, etc
- GMn/nTPE analysis details:
 - σ_n/σ_p extraction methodology
 - Systematic Uncertainties
 - Outstanding issues–HCAL efficiency, MC inconsistencies
- GEN analysis details:
 - Asymmetry and FFR extraction methodology
 - Inelastic contamination
 - Statistics challenges
 - Path forward
- Summary and conclusions

The SBS neutron Form Factor Experiments

UCONN 9/12/24

- Both GMN and GEN involve measurements of coincidence (e,e'N) reactions in quasi-elastic kinematics on light nuclear targets
- Common requirements include:
 - Scattered electron detection with tracking, PID, and full kinematic reconstruction
 - Nucleon detection and charge identification
- Key differences include:
 - Physics observables (cross section ratio versus polarized beam-target asymmetry)
 - Dominant sources of uncertainty:
 - nucleon acceptance/detection efficiency systematics (GMN)
 - Statistics and inelastic contamination! (GEN)

SBS Collaboration Meeting

GMN/GEN Apparatus, I: Hadron Arm

UCDNN 9/12/24

GMN/GEN Apparatus, II: Electron Arm

9/12/24

UCON

- BigBite spectrometer upgrades for 12-GeV era high-luminosity running:
 - GEM-based tracking—5 layers, 42,000 readout strips
 - Gas Cherenkov with high segmentation (510 PMTs) for pion rejection
 - Replace preshower lead-glass with rad-hard blocks from HERMES
 - Highly-segmented scintillator hodoscope (89 paddles) for precise time-of-flight measurement

GMN/GEN Apparatus, III: Targets

- Above: cryotarget (LH2/LD2) and optics ladder for GMN/GEN-RP/Pion-KLL
- Middle: scattering chamber "vacuum snout" for GEP

UCONN 9/12/24

• Above: Polarized Helium-3 target for GEN with optics foils/reference cell/NMR pickup coils/etc.

SBS Software Infrastructure

- SBS online/offline analysis software is based on <u>Podd</u>, the standard C++/ROOT-based Hall A analysis framework
- Important/"official" repositories (these are the codes that are developed/supported/maintained by the SBS software "czar" (me)):
 - SBS-offline: <u>https://github.com/JeffersonLab/SBS-Offline</u> Main repository of SBS-specific reconstruction libraries and source code. Includes raw data decoders that aren't yet standardized under Podd for new readout modules such as MPD w/VTP and VETROC
 - SBS-replay: <u>https://github.com/JeffersonLab/SBS-replay</u> Repository for analyzer database files, replay scripts, analysis and calibration macros, online GUI configuration files, etc. No build system. Just a collection of files. This repo is needed for all SBS analysis.
 - Libsbsdig: <u>https://github.com/JeffersonLab/libsbsdig</u> Main library for digitization of simulation output; translates *g4sbs* output (hit time, position, energy deposit, etc) into simulated raw detector signals ("pseudodata"), populates "hit" data structures used by reconstruction (ADC, TDC, crate, slot, channel, etc); purpose is for testing and developing event reconstruction algorithms and for physics analysis; analyzing simulated events using identical algorithms to those used for real data.
 - **G4sbs**: <u>https://github.com/JeffersonLab/g4sbs</u> GEANT4-based simulation of all of the major SBS experiments. Documentation at <u>https://hallaweb.jlab.org/wiki/index.php/Documentation_of_g4sbs</u>
 - SIMC: <u>https://github.com/MarkKJones/simc_gfortran/tree/bigbite</u> custom SIMC for use in SBS analysis; the main use case in SBS analysis is elastic/quasi-elastic event generation with realistic nuclear and radiative effects.
 - **SBSGEM_standalone:** <u>https://github.com/ajpuckett/SBSGEM_standalone</u> standalone GEM reconstruction code. Was useful during GEM cosmic commissioning before GMN, but superseded by SBS-offline. No longer under active development, maintenance, or end-user support.
- There are several other "unofficial" repositories for analysis support written by SBS thesis students that have proven highly useful.

Event Reconstuction in GMN/GEN: Common Aspects

- Electron reconstruction in BigBite
 - BBCAL clustering: energy, position, time reconstruction (FADC). Pion rejection via preshower. Define region of interest for tracking
 - Hodoscope: precise timing analysis (TDC)
 - GEMs: Tracking
 - BigBite optics: reconstruct kinematics and vertex
 - GRINCH: pion rejection
- Nucleon reconstruction in HCAL
 - HCAL clustering: energy, position, time (FADC and TDC)

BigBite Tracking

UCONN 9/12/24

BigBite Optics

UCDNN 9/12/24

-0.05

0.00

0.05

-0.10

0.15

y_{sieve} (m)

0.10

BigBite PID example: "SBS-9", run 13747 (15 uA LH2)

Neutron/proton separation

9/12/24

LICONP

- Nucleon charge ID is accomplished by a small vertical deflection of protons in SBS magnet
- Optimal deflection is that which gives "clean" n/p separation while minimizing acceptance/efficiency difference between neutrons and protons
- "Fiducial cut" is calculated based on reconstructed *electron* kinematics requires that both proton and neutron in quasi-elastic kinematics would hit HCAL active area with a safety margin equivalent to ~100 MeV Fermi smearing

HCAL reconstruction and elastic event selection, $Q^2 = 4.5$, $\epsilon = 0.5$ (SBS-9)

9/12/24

Experiments E12-09-019/E12-20-010 (GMN/nTPE)

9/12/24

e⁻ beam, up to 10 GeV, 15 μA

"Ratio" method for G_M^n

FIG. 1. The angular distribution function $\Lambda(\theta,\vartheta) \sin\theta$ in the absence of final-state interactions is plotted as a function of the proton scattering angle in the nucleon center-of-mass system $[\cos\theta = \hat{p} \cdot \hat{q}]$ for the scattering of 500-Mev electrons through an angle $\vartheta = 75^{\circ}$ with a momentum transfer giving $p = \frac{1}{2}q = 1.3 \times 10^{13}$ cm⁻¹. $\Lambda(\theta,\vartheta)$ is defined in Eq. (11.2); the function $F(\theta)$ entering the definition was evaluated using a Hulthén wave function for the deuteron. The cross section $d^3\sigma/(d\theta d\Omega_e dE_e')$ is given by $(4.71 \times 10^5 \text{ cm}^{-1} \text{ rad}^{-1} \text{ sterad}^{-1} \text{ Mev}^{-1}) \Lambda(\theta,\vartheta) \sin\theta$. No nucleon form factors have been introduced into the results.

Figure from Durand, 1959 (<u>Phys. Rev.</u> <u>115, 1020 (1959)</u>)

- Idea: simultaneous measurement of d(e, e'n)p and d(e, e'p)n in quasi-elastic kinematics
- Simultaneous measurement cancels many sources of experimental systematic uncertainty (electron acceptance/detection efficiency, luminosity, detector and DAQ livetime, etc).
- Small nuclear model dependence—nuclear (and radiative) effects similar/nearly identical for (e,e'n) and (e,e'p) cross sections
- Combine with existing knowledge of free proton cross section to extract free neutron cross section
- Major remaining source of systematic uncertainty is the relative acceptance/efficiency between protons and neutrons! → SBS-HCAL was designed to minimize this

nTPE experiment: Precision Rosenbluth Separation of $en \rightarrow en$

- Left: $\mu_n G_E^n / G_M^n$ world data and projected uncertainties from SBS program
- Right: projected nTPE sensitivity from proposal 12-20-010 (Eric Fuchey contact)
- Actual kinematics have $\Delta \epsilon \approx 0.3$, compared to 0.24 from the proposal

UCONN 9/12/24

GMN extraction using ratio method—basic idea

- Goal is to extract σ_n/σ_p in quasi-elastic kinematics with small uncertainties.
- Nuclear and radiative effects are expected to (mostly) cancel in the ratio, especially at high Q^2
- Electron acceptance, efficiency, luminosity/etc also cancel
- Most important known sources of systematic uncertainty:
 - Differences in acceptance/efficiency between neutrons and protons (if any)
 - Inelastic contamination (and other backgrounds, e.g., accidentals, fake GEM tracks/etc)
- SBS HCAL was designed to minimize n/p acceptance/efficiency difference!
 - Large acceptance

UCDNN 9/12/24

• High (and very similar) efficiencies for p, n (by design)

$$R_{np} \equiv \frac{\sigma_{d(e,e'n)p}}{\sigma_{d(e,e'p)n}} \approx \frac{\sigma_{en \to en}}{\sigma_{ep \to ep}}$$
$$\approx \frac{\epsilon G_E^{n\,2} + \tau G_M^{n\,2}}{\epsilon G_E^{p\,2} + \tau G_M^{p\,2}}$$
$$\implies G_M^n \approx \sqrt{\frac{R_{np}\sigma_R^p - \epsilon G_E^{n\,2}}{\tau}}$$

- BigBite gives \vec{q} vector and interaction vertex
- Project to the surface of HCAL and compare to detected nucleon position/energy/time.

SBS GMN analysis methodology

- All relevant (known) physics and detector effects are built in to the Monte Carlo simulation:
 - <u>SIMC</u>: quasi-elastic *d*(*e*, *e'N*) event generation with realistic nuclear and radiative effects (suitable modifications for GMN analysis by Provakar Datta, Mark Jones)
 - <u>G4sbs</u>: SBS detector simulation (GEANT4-based) (many contributors)
 - <u>Libsbsdig</u>: translate simulation output to pseudoraw data that can be processed by the same reconstruction code as the real data (Eric Fuchey)
 - <u>SBS-offline</u>: event reconstruction (A. Puckett, E. Fuchey, J.-C. Cornejo, many others)
- Fit real data to the sum of simulated quasielastic *n* and *p* scattering (plus inelastic background)
 - We interpret the relative normalization between MC n and p distributions required to match data as the ratio of the "measured" σ_n/σ_p to the "predicted" ratio from the MC cross section model.

9/12/24

 $Q^2 = 7.4 \text{ GeV}^2$, $0.25 \le W^2 \le 1.32 \text{ GeV}^2$, Fiducial Cuts

High-Q² GMN Data

 $Q^2 = 9.9 \text{ GeV}^2$, $0.2 \le W^2 \le 1.32 \text{ GeV}^2$, Fiducial Cuts

UCDNN 9/12/24

Data/MC comparison for W^2 distribution

 $Q^2 = 13.6 (GeV/c)^2$

CONN 9/12/24

• At high- Q^2 , Fermi-smearing and kinematic broadening lead to very wide W^2 distribution for quasielastic scattering from deuterium. • SIMC (quasi-elastic) plus built-in g4sbs inelastic generator (based on Christy-Bosted F2F107 fit) qualitatively reproduce the shape of the W^2 distribution very well even at the highest Q^2

GMn systematics: HCAL efficiency

- LH2 elastic data give us a clean sample of tagged protons we can use to estimate HCAL efficiency
- No dedicated calibration data for neutron detection efficiency
- We can achieve a (relatively) clean selection of elastically scattered electrons based on BigBite variables alone (especially at low Q^2)
- We use the LH2 elastic data to benchmark the Monte Carlo calculation of proton detection efficiency
- To the extent that data and Monte Carlo agree on the proton detection efficiency, we deem the Monte Carlo simulation trustworthy for both proton and neutron.
- For "SBS-8" $(Q^2, \epsilon) = (4.5, 0.8)$, we have plenty of LH2 and LD2 data across multiple field settings of SBS, to populate the entire useful active area of HCAL.

Methods for Proton Detection efficiency (PDE) analysis

- All methods of extracting PDE involve attempting to estimate the number of elastically scattered protons from electron information alone ("denominator")
- Example at left shows "inclusive W² anticut" method
- Pros: Includes background estimation and subtraction
- Cons: very sensitive to cuts and fitting

Pure cut-based method for PDE

- Since January 2024, we have adopted a new strategy for proton efficiency analysis
- Idea is to use aggressive cuts on BigBite variables alone to obtain a "clean" selection of elastically scattered electrons
- In addition to track quality and BigBite PID cuts (preshower, GRINCH, etc), we also apply fiducial cuts on the track midplane projection ("optics validity"), vertex z (reject small end window contribution), and W^2 , as well as the usual "fiducial" cuts on the predicted proton position at HCAL (accounting for magnetic deflection)
- Pros: allows us to study detailed position dependence of efficiency
- Cons: Neglects inelastic background; less reliable for high Q^2

Cut-based HCAL proton detection efficiency example results

9/12/24

Summary of HCAL proton efficiencies from cut-based method

Acceptance average cut-based efficiency

9/12/24

HCAL proton efficiency map, ALL nTPE LH2 data combined

Global cut 1.0 Expected x (m) 0.9 1.0 0.8 0.5 0.7 0.0 0.6 -0.5 0.5 -1.00.4 -1.5 0.3

0.0

0.5

Example of "coarse-grained" proton efficiency map from data, SBS8/9, all field settings combined

• "Coarse-grained" efficiency map uses bin size of ¼ of HCAL block size (i.e., 4 bins/block).

-0.5

• Combination of SBS field settings covers entire useful area for all kinematics

-1.0

9/12/24

• Black lines indicate typical fiducial cut boundary

-2.0

-2.5

1.0 Expected y (m) 0.2

0.1

0.0

Formalism for applying *ad hoc* efficiency corrections to MC, II:

For each Monte Carlo event, we calculate the following ratio (possible variations on this theme to be discussed later):

Relative efficiency correction factor $c \equiv$

UCONN 9/12/24

$$\frac{\epsilon_{\rm cut-based}^{\rm data}(x,y)}{\left<\epsilon_{\rm cut-based}^{\rm data}\right>},$$

where $\epsilon_{\text{cut-based}}^{\text{data}}(x, y) \equiv$ Interpolated cut-based proton efficiency at position (x, y) from grid/histogram

 $\langle \mathcal{O} \rangle \equiv$ acceptance-average value of observable \mathcal{O}

- The acceptance-averaged value of the position-dependent correction factor is 1 by construction.
- Our baseline assumption is that the correction factor is charge-independent; i.e., the same for protons and neutrons, depending only on position and not on field setting or incident angle or anything else.
- In constructing weighted Monte Carlo distributions for comparison to real data, we *multiply* each simulated event by the correction factor *c* before filling the standard "dx" histograms and fitting to data.
- We can also attempt to correct for the *absolute* efficiency difference between real data and MC by introducing a modified correction factor:

Modified correction factor
$$c' \equiv c \frac{\langle \epsilon_{\text{cut-based}}^{\text{data}} \rangle}{\langle \epsilon_{\text{cut-based}}^{\text{MC}} \rangle} = \frac{\epsilon_{\text{cut-based}}^{\text{data}}(x, y)}{\langle \epsilon_{\text{cut-based}}^{\text{MC}} \rangle}$$

Data/SIMC comparison of PDE (SBS-8, 70% field), II (Provakar)

n/p Ratio Uniformity (comparing SBS-8/SBS-9 (nTPE kinematics))

• For "low" Q^2 data, we can extend the cut-based method for proton efficiency analysis to neutron/proton ratios from LD2 (aggressive cuts to obtain a "clean" quasi-elastic sample) and select proton and neutron events using cuts on θ_{pq} and/or Δx , Δy . As long as n/p separation is sufficient, we can also obtain clean (*e*, *e'n*) and (*e*, *e'p*) samples.

- n/p ratios for nTPE kinematics exhibit non-statistical fluctuations corresponding to regions of known lower efficiency of HCAL
- With acceptance-matching cuts, we expect near-total cancellation of HCAL efficiency systematics in the "super ratio" between two ϵ points at the same Q^2 (Indeed, the projected accuracy of the Rosenbluth slope depends implicitly on this assumption)

UCONN 9/12/24

nTPE "Super-Ratio" position dependence (pure cut-based method) nTPE Super-ratio

9/12/24

Absolute yield analysis, I (Provakar Datta)

Yield per Run – SBS4 0% LD2

Yield per Run – SBS4 30% LD2 (Excluding 1st 3 Runs)

- Comparison of charge-normalized, live-time corrected quasi-elastic yields for LD2 runs with SBS magnet OFF and ON shows good agreement/consistency.
- QE yield (n+p) from LD2 with p and n with field off agrees with sum of n and p yields (field on) to better than 1%

Absolute yield analysis, II (overall reconstruction efficiency)

SBS14 70% LD2 and LH2 Runs

Comparison of absolute yield between data and MC for LH2 elastic and LD2 quasi-elastic shows high overall reconstruction efficiency during GMN (~90%)

GMn "Pre-preliminary" Results (Collecting Various Thesis "Results")

Figure 5.4.1: E12-09-019 world data including the results obtained from this work. The error bars represent the total error obtained by adding the statistical and systematic errors in quadrature.

- Above, left: Provakar Datta (UConn)
- Above, middle: Sebastian Seeds (UConn)

Figure 7-2: [Exploratory] Experimental G_M^n values overlaid with world G_M^n data.

- Below, middle: John Boyd (UVA)
- Above, right: Anuruddha Rathnayake (UVA)

SBS Collaboration Meeting

Revisiting GEM Gain drop and Efficiency during GMN—role of trigger?

9/12/24

LUN

Beam Current	BBCAL Trigger Threshold
3	-428
10	-512
15	-554
20-35	-607

- We observed a significant drop of elastic yield with beam current during test runs taken at the end of GMN
- "Flattening" at high beam current was not fully understood
- Changing trigger threshold with beam current suggests trigger efficiency plays an important role
- Potentially changes the story significantly on GEM tracking efficiency during GMN!

SBS Collaboration Meeting

GMN analysis roadmap

- Two full reconstruction passes completed
- Calibrations are relatively mature, but significant room for improvement exists in two areas:
 - HCAL energy and timing calibration
 - Timing hodoscope calibrations and analysis
 - Coincidence timing
- There *will* be a third cooking pass of GMN/nTPE before publication, BUT:
- Pass 2 cooking results are of sufficient quality for the extraction of preliminary physics results.
- Monte Carlo simulation and physics analysis machinery is fully developed and mature
- We are in the process of chasing down remaining small inconsistencies between the experiment and the MC simulation, which I won't belabor here.

E12-09-016: G_E^n/G_M^n to 10 GeV² using polarized ³He(e,e'n)pp

Arrington 18 fit Segovia 14 (DSE) Riordan 10 fit World data SBS GEN-RP SBS nTPE SBS GEN ³He 0.5=0.00.

Target chamber

60 cm or 23.6 inches

Pumping chamber

13 inches center to center

- High-luminosity polarized ³He target with convectiondriven circulation of polarized gas.
- Measurement to 10 GeV² has enormous discrimination power among theoretical models
- Data-taking completed Oct. 29, 2023!

UCONN

OD = 4.25 inches

Transfer tubes

Polarization Observables in Elastic $eN \rightarrow eN$ Scattering

Standard coordinate system and angle definitions for nucleon polarization components in $eN \rightarrow eN$

• Polarized beam-polarized target double-spin asymmetry or polarization transfer observables in OPE are sensitive to the electric/magnetic form factor *ratio*, giving enhanced sensitivity to $G_E(G_M)$ for large (small) values of Q^2 , as compared to the Rosenbluth method

The SBS-GEN polarized Helium-3 target

UCDNN 9/12/24

SBS GEN analysis: Moller Polarimetry: Faraz Chahili and Don Jones

Beam Polarimetry for GEn – Hall A Beam Polarization

SBS GEN analysis: Quasi-elastic ³He(e,e'n)pp event selection

- Plots/analysis credit: Sean Jeffas (UVA)
- Histograms include all (or substantially all) of the data from the first reconstruction pass (does not include Fall 2023 data which are expected to roughly double statistics at the highest Q^2)
- n/p separation for quasi-elastic scattering is very clean due to magnetic deflection
- Substantial, essentially irreducible inelastic background is present, especially at large Q^2

UCONN 9/12/24

Preliminary raw ³He(e,e'n) asymmetries (Sean Jeffas)

Asymmetry vs Run Number

9/12/24

UNN

- Preliminary (e,e'n) asymmetries at lowest Q² (overlapping existing GEN data) consistent in sign, magnitude with expectatation
- Neutron asymmetries large, change sign with IHWP as expected
- Proton asymmetries small

Path forward for GEN analysis

- Detector calibrations still require substantial work toward a 2^{nd} full reconstruction pass—expect significant increase in statistics (and somewhat improved resolution) for higher Q^2 's with improved calibrations
- Nuclear corrections: updated Generalized Eikonal Approximation code obtained from Misak Sargsian
- Proper definition of estimators, background contamination, background asymmetry, background subtraction
- Finalize polarimetry
- Substantial remaining analysis work students graduating → we are several years from publishable physics results from GEN

Current uncertainty projections (may prove too optimistic)

Improving SBS Timing Analysis, I

- Seen as crucial for improving signal/background for GEN analysis
- Proof of concept for simultaneous global fit of all hodoscope calibration constants (offset, walk correction, propagation speed, time-of flight variation)
- See <u>https://sbs.jlab.org/cgi-bin/DocDB/private/ShowDocument?docid=540</u>
- Gary Penman working on incorporating HCAL

UCONN 9/12/24

Improving SBS Timing Analysis, II: Resolving Beam RF structure

- Above, left: Raw hodoscope mean time minus RF time modulo 4 ns versus hodoscope bar number
- Above, right: for a single bar

CONN

• Below, right: for the same bar during GEN (which used 2-ns bunch spacing)

9/12/24

bb.hodotdc.clus.tmean[0]+bb.gem.trigtime-fmod(bb.tdctrig.tdc,2.004) {bb.tdctrig.tdcelemID==4 && bb.hodotdc.clus.id[0]==44}

Summary and Conclusions

- GMN/nTPE analysis is converging; thesis students graduating, systematics evaluation making rapid progress, Monte Carlo fine-tuning, formalism for HCAL efficiency corrections, etc.
 - Estimated time to publication ~1-2 years
- GEN analysis is less mature
 - Significant work on detector calibrations is still needed to improve resolution and signal/background ratio—especially in the area of time-of-flight and HCAL energy reconstruction
 - Sean Jeffas already graduated, other GEN students, guided by Arun, carrying the torch
 - Estimated time to publication \sim 2-4 years
- See more detailed summary talks by Provakar (GMN) and Hunter (GEN)

Backups

SBS Collaboration Meeting

Ratios of quasi-elastic n/p yields to total quasi-elastic electrons

Figure 107: Nucleon detections and n:p ratio vs expected nucleon x position (SBS-9, 70% field). Both plots are bounded by the fiducial cut on this kinematic setting. The y-axis on the left plot includes an arbitrary normalization. The significant variation in detected protons is strongly pronounced for this kinematic setting at $x_{exp} = 0.25$ and results in a systematic upward shift in the n:p ratio at the same expected x position.

• Note: neutrons fall outside the "dip" region for the most part, ratio distribution more uniform

9/12/24

CON

• Figure from Sebastian Seeds' thesis

- Cuts include "good electron" in BigBite, aggressive fiducial *y* cut, and W²
- Aggressive fiducial cut in *y* enhances the "dip" region for protons in SBS-9
- "Proton" and "neutron" events are selected with aggressive "spot" cuts (2σ elliptical)
- Form ratio of n and/or p events to total "quasi-elastic" electron events as a function of *expected* neutron x position.
- This is not a detection efficiency, but we can attempt to reproduce these ratios in MC as a proxy for "efficiency"

Cancellation of position-dependent efficiency systematics in nTPE "super-ratio"

Figure 108: The top row plots are neutron to proton ratio vs expected x from e' projections. The bottom row plots are the same, except vs expected y from e' projections. The first column plots are from SBS-8 ($\varepsilon_1 = 0.807$). The second column plots are from SBS-9 ($\varepsilon_2 = 0.517$). The third column plots are ε_1 n:p ratio (SBS-8, 70% field) divided by ε_2 n:p ratio (SBS-9, 70% field). The pronounced systematic effects, consistent with losses in detection efficiency, are shared across kinematics and largely cancel in the super-ratio.

UCUNI

- Figure is from Sebastian Seeds' thesis.
- Top row x axis is expected (neutron) x position
- Bottom row x axis is expected (neutron) y position
- Left (middle) column y axis is SBS-8(9) n/p ratio
- Right column y axis is double ratio $\frac{\left(\frac{\overline{p}}{p}\right)_{SBS8}}{\left(\frac{\overline{n}}{p}\right)_{SBS9}}$,
 - illustrating (partial) cancellation of efficiency non-uniformity in the double-ratio.
- Fiducial cuts are aggressive (especially for SBS-8) to match smaller envelope of elastic events on HCAL for SBS-9.
- This artificially enhances the "dip" region.
- Wider fiducial cuts reduce sensitivity to the dip region in the acceptance-averaged ratios

Data/SIMC comparison of PDE (SBS-8, 70% field), I (Provakar)

Data

SIMC

Numerator: Good e- track cuts Fiducial Cut 0.65 < W2 < 0.95 pdx_nS < 3.5 dy_nS < 3.5 eHCAL>0

Denominator: Good e- track cuts Fiducial Cut 0.65 < W2 < 0.95

Numerator:

Good e- track cuts Fiducial Cut 0.65 < W2 < 0.95 pdx_nS < 3.5 dy_nS < 3.5 eHCAL>0

* Identical event selection cuts have been applied to data and MC

Statistics requirements: asymmetries vs. cross section measurements

Cross sections:

 $\implies \frac{\sigma}{\sigma} \propto N$ $\implies \frac{\Delta\sigma}{\sigma} = \frac{1}{\sqrt{N}}$

To measure a cross section with a relative statistical precision of 1%, you need 10,000

events.

Asymmetries:

 $\Delta A = \sqrt{\frac{1 - A^2}{N}}$ $\frac{\Delta A}{A} = \sqrt{\frac{1 - A^2}{NA^2}}$

FIG. 6. (Color online) Focal-plane helicity-difference asymmetry $n_+ - n_- \equiv (N_{\text{bins}}/2)[N^+(\varphi)/N_0^+ - N^-(\varphi)/N_0^-]$, where N_{bins} is the number of φ bins and $N^{\pm}(\varphi)$, N_0^{\pm} are defined as in Eq. (4), for the three highest Q^2 points from GEp-II. Curves are fits to the data. See text for details.

FIG. 10. Focal plane helicity difference/sum ratio asymmetry $(f_+ - f_-)/(f_+ + f_-)$, defined as in Eq. (20), for the GEp-III kinematics, for FPP1 and FPP2 data combined, for single-track events selected according to the criteria discussed in Sec. III B 2. Asymmetry fit results are shown in Table V. The asymmetry at $Q^2 = 5.2 \text{ GeV}^2$ is also shown separately for events with precession angles $\chi < \pi$ and $\chi \ge \pi$, illustrating the expected sign change of the $\sin(\varphi)$ term.

- Example: Typical asymmetry magnitude in a recoil proton polarimeter at "high" momentum is ~few percent.
- To measure a 5% asymmetry with a relative precision of 1%, one needs $N = 10,000 \times \frac{1-A^2}{A^2} \approx 4 \times 10^6$ events!

9/12/24

→ Asymmetry measurement must maximize beam and/or target polarization, and luminosity × acceptance!

SBS/BigBite with GEMs—Hall A enters the "Big Data" era

SBS G_M^n Data Acquisition (DAQ) Facts

- Data Acquisition challenges:
 - 43,000+ detector readout channels!
 - Very high luminosity, $\sim 10^{38} \ cm^{-2} s^{-1}$
- During 5 months (Oct 2021 Feb 2022) of SBS
 Gⁿ_M running, Hall A has recorded ~2 PB worth of raw data!
 - This is more than any other Hall.
 - Also, 5 times more data than all prior Hall A experiments combined in 25 years!

[*] Graphic from Ole Hansen (JLab), Jan 2022

9/12/24

APS April Meeting, 04/11/2022

7

GEM-based tracking in BigBite: what we're up against (run 13727, 12 uA LD2, $Q^2 = 4.5 \text{ GeV}^2$, E = 4 GeV)

 Single-event display from BigBite GEM trackers during typical SBS GMN production run

9/12/24

UCONN

BigBite calorimeter narrows search region for tracking

= approximate size of calorimeter-constrained track search region at each layer

4000

1200

10000

8000

6000

4000

15000

1000

High- $Q^2 G_M^n$ and quark flavor FFs

FIG. 3 (color). The Q^2 dependence for the *u* and *d* contributions to the proton form factors (multiplied by Q^4). The data points are explained in the text.

Cates et al., PRL 106, 252003 (2011)

- Notable behaviors: d and u quark FFs show dramatically different Q^2 dependence.
- Flavor FF ratios F_2^q/F_1^q almost constant for both u and d above 1 GeV²

The SBS high- Q^2 Form Factor Program in Hall A

9/12/24

 Figure from "50 Years of QCD" (EPJ C 83, 1125 (2023)):

https://inspirehep.net/literature/261706 5

- GMN/nTPE (E12-09-019/E12-20-010) using "ratio" method on deuterium: Completed Oct. 2021-Feb. 2022
- GEN Helium-3: Completed Oct. 2022-Oct. 2023)
- GEN-RP: Completed April-May, 2024
- GEP: Projected run 2025
- Except for G_M^n , all SBS form factor measurements are based on polarization observables.
 - Small elastic cross sections and asymmetries require as large as possible FOM (= Luminosity × Polarization² × Acceptance)