GEp status safety, students and manpower

Evaristo Cisbani for GEp/SBS collaboration SBS Collaboration Meeting 12 / September / 2024

2024: 62 Registrants from

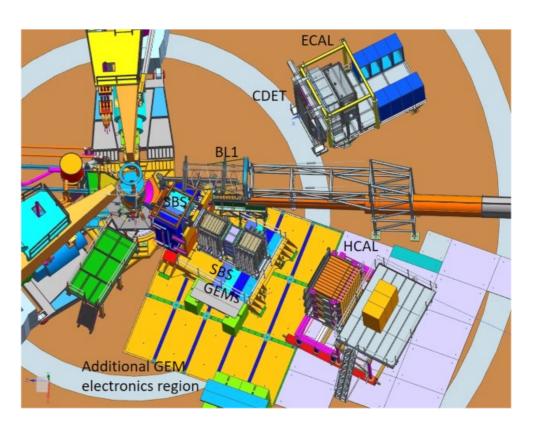
AANL – Yerevan Old Dominion University Christopher Newport University Shandong University FIU **Temple University** Hampton University **UMass Amherst INFN** University of Connecticut James Madison University University of Glasgow JLab University of Salento LLNL UVa MIT Northern Michigan University William & Mary

GEp (safety oriented) overview

GEp, is the 4th main experiment (after GMn, GEn and GEn-RP/K_{LL}) running with equipment developed for the Super BigBite Spectrometer (SBS) experimental program.

The GEp will run at higher luminosity than the previous SBS experiments.

The equipment does not involve unique or unusual dangers or safety considerations.

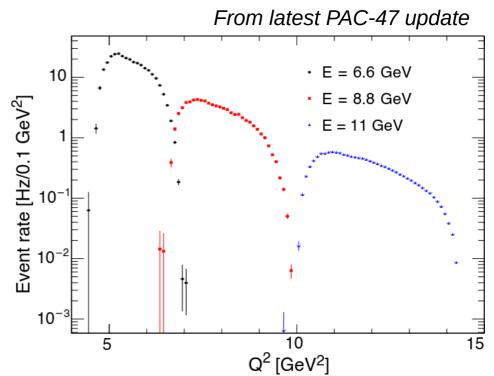

The main safety-specific aspects are related to:

- HallA cryogenic Hydrogen target (30 cm thick),
- high current magnet power supplies,
- high voltage to detectors (and high temperature),
- adequate lead shielding
- massive pieces which must be moved with care

GEp Layout

- --- Experiment HallA equipment ---Hall A beamline
 - Hall A cryo-targets containing LH₂ (and C foils targets)
 - Hall A scattering chamber
- --- Experiment specific equipment ---Electron Arm:
- Coordinate Detector hodoscope, **CDet**
- Electron Calorimeter, **ECal**
- Hadron Arm:
- SBB Spectrometer magnet (48D48), correctors and power supply
- GEM trackers (front and rear)
- CH2 analyzer (polarimeter component)
- Hadron Calorimeter, **HCal**

+ significant amount of cabling and shielding of control/readout electronics


GEp run plan/safety

GEp Kinematics

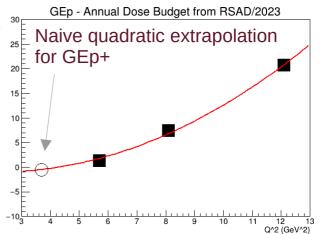
Beam:

- Current: 75 µA,
- Polarization: 85% LH₂ Target: 30 cm

45 PAC days of production +2 PAC days for "GEp+"

		Beam		p-Arm / SBS/HCal		e-Arm / ECal+CDet			Time
Exp.	Setting	Е	Q ²	P_{p}	Theta (deg)	E'e	Theta (deg)	Distance (m)	PACDay
GEp+	2a	4.36	3.7	2.73	28.5	2.35	35.0	5	2
GEp	1	6.48	5.73	3.88	25.7	3.42	29.47	8	2
	2	8.59	8.13	5.19	22.1	4.26	27.27	6.5	11
	3	10.7	12.1	7.29	16.9	4.27	29.7	4.7	32

Source: M. Jones et al. July 30 & GEp+ proposal


Radiation Level

- Radiation Budget estimated by Pavel Degtiarenko Mar/2023 based on the GEp setup (I=75 uA, 30 cm LH₂) and proposal kinematics
 - The contribution to the boundary dose accumulation expected to be noticeable (2.94 mrem ~30% of the yearly threshold)
 - The average dose during the run is 238.5% of allowed dose, ~20% above the alert threshold (200%) → extra limiting measures (such as extra shielding, scheduling coordination with other experiments, etc.), *evaluation to be finalized*

6 Annual Dose Bud

from RSAD (draft/2023)		Q ²	Dose rate at fence post	Dose per setup	% annual dose budget
Exp.	Setting	GeV ²	urem/hr	urem	%
GEp	1	5.7	2.67	128	1.3
	2	8.1	2.79	736	7.4
	3	12.1	2.87	2067	20.7

GEp+ dose should be lower than setting GEp-1

GEp run plan/safety

GEp Safety Documentations

Largely overlap with latest GMn/GEn/GEn-RP&K_{LL} safety documentations

Conduct Of Operations

COO – update (target from ³He to LH₂); consolidated draft

Emergency Response Guidelines

ERG (Guidelines and Chart); up-to-date

Equipment Safety Assessment Doc

 ESAD – (target from ³He to LH₂, from BigBite to CDet+ECal); consolidated draft

Radiation Safety Analysis Doc

 RSAD – radiation budget table available; countermeasures to take care of ~20% additional average dose during runtime period under finalization

OSP's – Operational Safety Procedures

- LH2 Cryotarget: standard Hall A equipment; Silviu Covrig Dusa and Dave Meekins confirmed standard target OSP will cover the GEp target:
 - standard target operates with 3 independent loops and two are typically used for condensed liquid H₂ or D₂
 - GEp requires one target loop condensed with LH₂ 30 cm
 - cell shape need a change in the target loop volume (ongoing)
- Electron Arm drafts available in 2023
 - ✓ CDET Peter Monaghan
 - ✓ ECAL Donald Jones

Hadron Arm OSP's

Documents are up-to-date (3 need resubmission)

	GEMs	SBS Corrector Magnets' Power Supplies	SBS Magnet Moving/positioni ng	HCAL
Doc Owner	H. Szumila- Vance	D. Flay, Y. Roblin, J. Benesch	J. Butler	J. Poudel, B Woijsekhowski, M. Jones
Issue Date	8/Mar/2021	28/Aug/2021	9/Nov/2021	20/Mar/2023
Main Hazards	HV Electrical Shock, compressed gas, ladder work	Missteering of beam, Electrical, Magnetic Field, Fire	Pinch point, stored energy, class 2 electrical hazard, radiation hazard, pressure system, ODH, magnetic field	160 V for pulsed LED, ladder, fire, use of lifts, hand tools
Risk Level without → with mitigations	3→1	2 → 1	3→1	3→1

Summary - safety documents (GEp)

https://hallaweb.jlab.org/experiment/SBS/GEn/GEn_Website.html#gmnsafety

- GEp Conduct of Operations COO # minor update of GEn-II document
- Emergency Response Guidelines ERG
- Equipment Safety Assessment Document ESAD
- Radiation Safety Analysis Document RSAD # needs some update
- Safety Procedures (OSP)
 - SBS Monitoring/Positioning # needs some update
 - SBS and Corrector Magnet Power Supplies
 - LH2 Target
 - e-arm CDET finalization
 - e-arm ECAL finalization
 - SBS GEM detectors (access)
 - SBS HCAL

Students involved in GEp

Next slides have been assembled from information and pictures provided by the students involved in GEp, contacted by e-mail

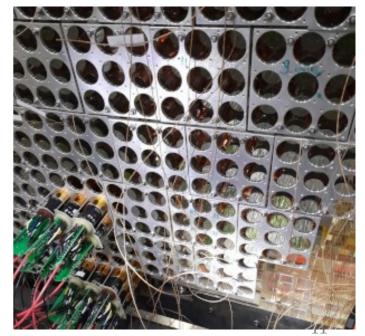
Thanks to all of Them

Hope I did not miss other students and relevant information

Mahmoud Gomina Virginia Tech

Supervisor: Marie Boer

Started in GEp: Summer/2023


End expected: 2027

Activities: ECal installation; assembling dividers, wrapping mu-metals, testing PMTs and installation in Hall A.

Next activity: cabling (running HV and signal cables from the ECal to the DAQ bunker).

Available for additional work from the end of November this year.

Nikolas (Kip) Hunt UCONN

Supervisor: Andrew Puckett 3rd year grad.

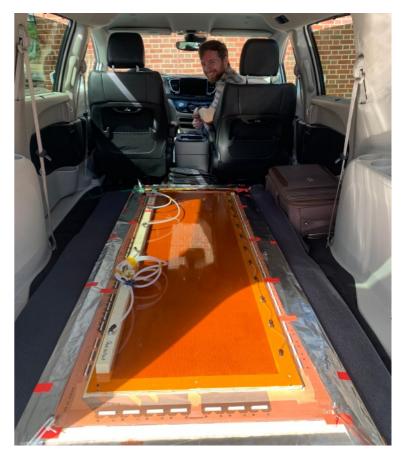
Activities:

working on the ECal installation in Hall A; point person on Monte Carlo simulations of GEp for shielding design (GEMs), effects on optics and background, trigger rate estimates; g4sbs geometry updates.

Will be on site for the duration of the GEp run Will contribute to the reconstruction software development.

Jacob Thomas McMurtry University of Virginia

Supervisor: Nilanga Liyanage Started in GEp: Summer/2023


End expected: 2027/28

Activities: assist with the GEM detectors/tracker, hardware and DAQ set up

Also started with some of the software/simulation work on the side

Plan to do analysis for GEp for his thesis.

Ben Spaude William & Mary

Supervisor: Todd Averett

Start in GEp: end of current semester

Activities to be defined, as soon as he finish the semester classes

Jhih-Ying Su UMASS – Amherst

Supervisor: Krishna Kumar

Started in GEp: June/2024

End expected: June/2025 (at least)

Activities:

working on the installation of ECal (PMT testing and cabling), trigger simulation, and the HCal scaler

Run period Manpower some evaluations

- start 3 days before beam expected in Hall A
- total 45 PAC days + 2 PAC days for low Q²
- 3 periods of SBS/ECAL movement 15 days
 → total calendar runtime: 3 + 47x2 + 15 = 112 days
- run start expected for Feb 1th, 2025 + contingency
- total number of Run Coordinators: 112 / 7 = 16
 - experts could be RC closer to the end of run
 - spokespeople could be RC twice
- shifts slots to be covered: 109x3x2 = 654

List of 16 RCs

Identified and contacted by Bogdan

Donald Jones Bill Henry Arun Chandan **Evaristo** Bogdan Arun Xinzhan

Jiwan Lubomir Jimmy Evaristo (or possibly Roberto Perrino) Ciprian (before Feb/26) Ole Andrew "Contingency" Mark Silviu Simona Nathan Heinrich

Nilanga

Eric

Shift Crew composition and needs

- 2 people:
 - Target Operator
 - Shift Leader & Run Conductor
- Total shifts: 109 x 3 = 327
- Shift web page maintained by W. Tireman

Components / Contact persons

Physics Division Liaison	D. Jones
Hall A beam line, BPMs, BCMs and corrector magnets	Ciprian Gal
The LH2 target	D. Meekins
The Möller polarimeter	D. Jones
SBS Magnet and correctors	B. Wojtsekhowski
The e-arm, SBS and beam line equipment	L. Hurt
DC power for spectrometers and SBS correctors	Zak
The DAQ bunkers	L. Hurt
The LeCroy HV crates controls	Jimmy Caylor, R. Michaels
CDET	R. Marinaro, P. Monaghan
ECAL	D. Jones, Jimmy Caylor, and Simona Malace
SBS GEM trackers	N. Liyanage, Ching Him Leung
Gas supply for the GEM chambers	Chandan Ghosh
HCAL detector	J. Poudel
The DAQ electronics and readout software	A. Camsonne
The data analysis software	A. Puckett
Safety documentation	E. Cisbani
SBS web page and shifts schedule	W. Tireman
GEp run coordinators	B. Wojtsekhowski

Consolidation required, link to run plan document in Mark presentation

Summary

- Lots of work ongoing for the preparation of the experiment
- Safety documentation looks in rather good shape (thanks also to previous SBS experiments)
- GEp requires significant amount of manpower
- Students are involved in a stimulating scientific community that will benefit from their work