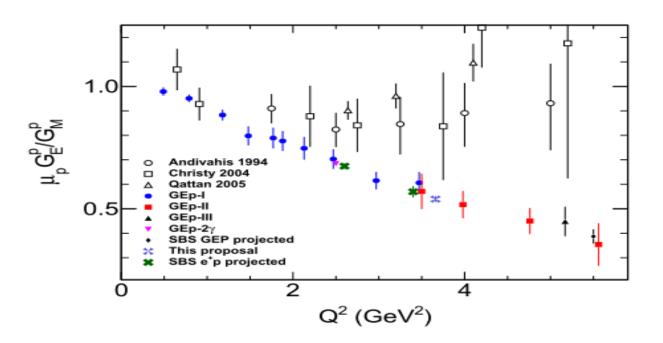
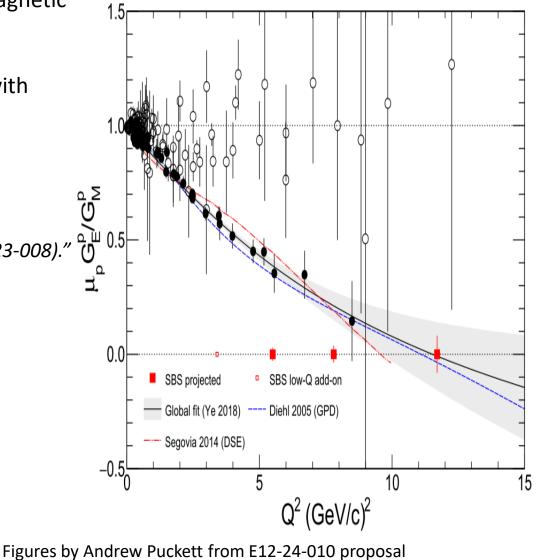

Hall A run plan for GEp and detectors

Mark Jones September 2024 SBS Collaboration Meeting

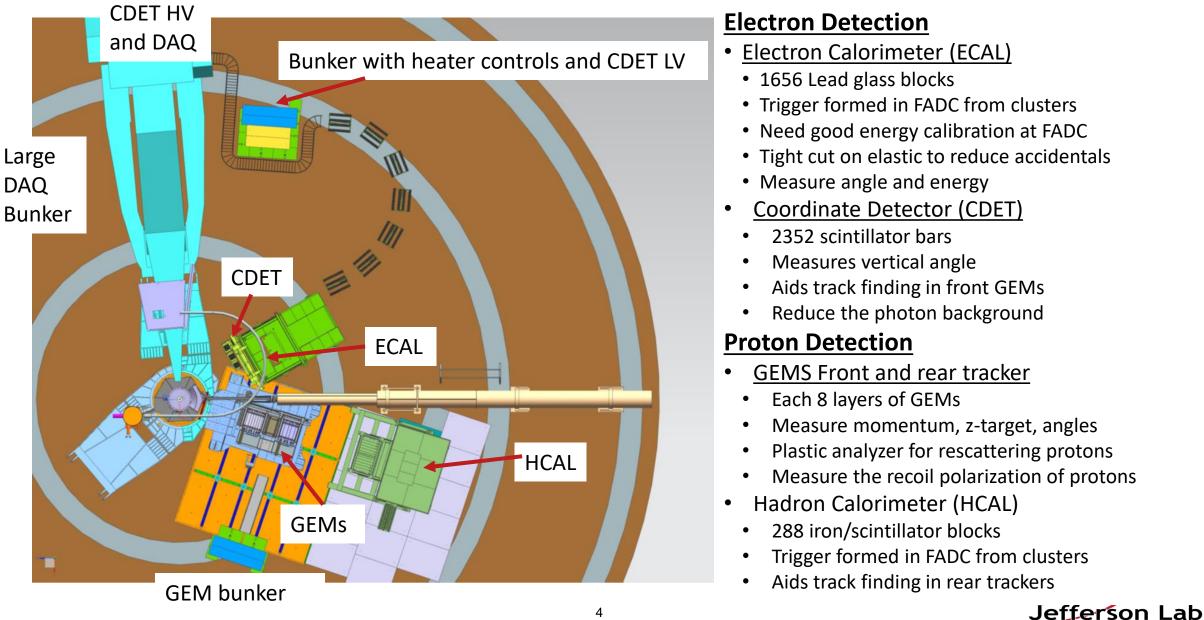




GEP: Ratio of proton electric to magnetic form factor

- Last experiment in series of neutron and proton elastic electric and magnetic form factor experiments.
- E12-07-109 Measure proton electric form factor to Q^2 =12
- E12-24-010 High-precision measurement of proton form factor ratio with Polarization Transfer,
 - Spokespeople: A. Puckett*, J. Bernauer and A. Schmidt
 - Measure proton G_E/G_M to 1% statistical precision at $Q^2 = 3.8$
 - "The primary motivation for this request is to improve the precision of the polarization data at this Q² in anticipation of the comparison to a future measurement using positrons, described in a previous LOI to PAC51 (LOI12-23-008)."

Jefferson Lab


Draft beam schedule

- Lab has been in a LOTO pause. Delayed beam delivery and work in the hall
- Tentative beam schedule
 - Hall C and D startup Jan 24, 2025
 - Hall B startup Jan 27, 2025
 - Hall A startup Jan 30, 2025 at 3pass.
 - 3 pass is 11 Calendar days followed by 3 days for kinematic change, 1 day pass change
 - 4 pass is 31 Calendar days followed by 3 days for kinematic change, 1 day pass change
 - 2 pass is 4 Calendar days followed by 3 days for kinematic change, 1 day pass change
 - 5 pass is 89 Calendar days

Setting	Ebeam	Q ²	Proton	Proton ang	Electron	Electron ang	ECAL dis
			Momentum	SBS	momentum	ECAL	
1	6.476	5.7	3.88	25.7	3.4	29.47	8m
2	8.588	8.1	5.18	22.1	4.3	27.27	6.5m
2 a	4.359	3.8	2.73	28.5	2.4	35.0	5m
3	10.688	12.0	7.29	16.9	4.3	29.7	4.7m

Overview of detectors: Layout for Q^2 = 12 kinematic point

SBS GEMs

- SBS Dipole magnet at 2.4 Tm which bend protons by about 6 deg (at p = 7.3) and spin precession, χ_{θ} , of 80 degrees.
- Can be mixing in the non-dispersive plane, $\Delta \phi$, which mixed Pt and Pl and needs to be understood.

$$\frac{P_t}{P_\ell} = \frac{P_t^{spec}}{P_n^{spec}} \sin \chi_\theta + \gamma_p (\mu_p - 1) \Delta \phi$$

$$\mu_p \frac{G_E}{G_M} = -\mu_p \frac{E_e + E'_e}{2m_p} \tan \frac{\theta_e}{2} \left(\frac{P_t^{spec}}{P_n^{spec}} \sin \chi_\theta + \gamma_p (\mu_p - 1) \Delta \phi \right)$$

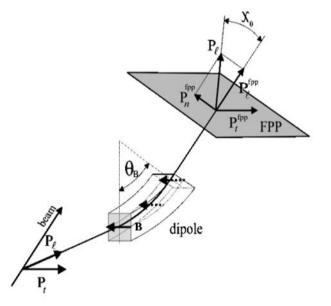


FIG. 15. Precession of the polarization component P_{ℓ} in the dipole of the HRS by an angle χ_{ϱ} .

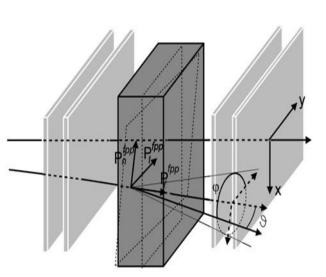
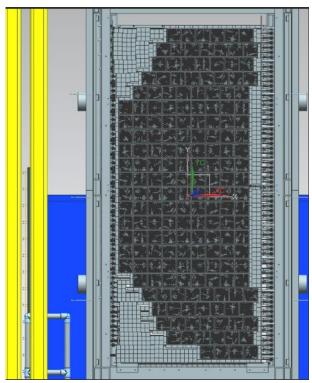


FIG. 9. Principle of the polarimeter, showing a noncentral trajectory through the front chambers, scattering in the analyzer, and a track through the back chambers; ϑ is the polar angle, and φ is the azimuthal angle from the y direction counterclockwise.

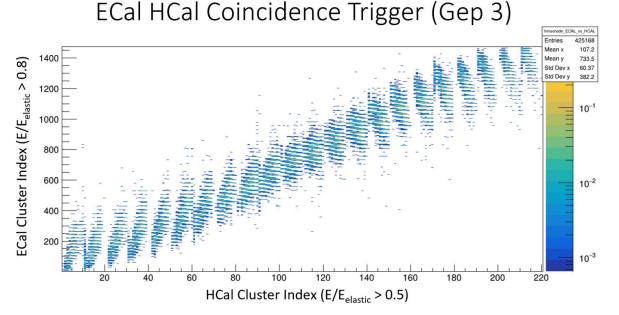


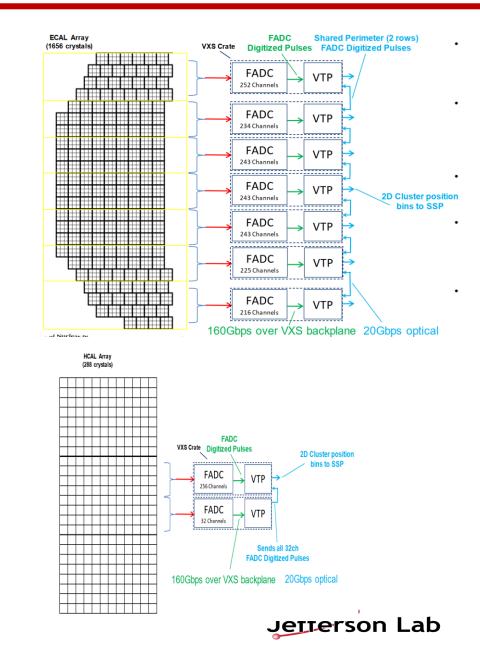
ECAL and CDET

<u>ECAL</u>

- Don Jones will give status update
- Need constant heating to anneal lead glass from radiation damage.
- Small test with 6 supermodules during GEN/GEN-RP was successful
- Major people effort for cabling detector.
 - Volunteers welcome

<u>CDET</u>


- Peter Monaghan will give status update
- Detectors in the hall
- Have undergrad students, volunteers welcome.



GEP Trigger

- Form ECAL and HCAL singles trigger from clusters in the FADC.
- Correlation between the singles trigger to form the coincidence trigger
- Hanjie Liu is implementing this algorithm with help from Ben Raydo.
- Need to have energy calibration of ADC signals in the FADC
 - Cut on ECAL at 80% of elastic electron
 - Electron energy varying with scattering angle
 - Cut on HCAL at 50% of elastic proton.
 - Example below from Kip Hunt's trigger document
 - Graduate student working on each Q² point.

Summary

- Started the GMN experiment in Fall 2021.
 - Completed GMN, GMN-TPE, GEN, GEn-Rp and K_LL.
- Thanks for the techs, designers and engineers
 - Needed to new lead wall design to shield the SBS GEMs.
 - Needed to engineer and design so that CDET is attached to the ECAL and can be moved together.
- The commissioning will be challenging. Only 11 calendar days with 4 days needed for the measurement.
 - Beamline, Helicity, and Moller beam polarimeter
 - Energy Calibration of the HCAL and ECAL in the FADC for the trigger
 - Testing and refinement of the trigger
 - Tracking in the SBS GEMs at high rates
 - Understanding SBS Optics and spin
- The run plan is just starting and is a working document

