

Parton structure from electroweak processes with positrons

Wally Melnitchouk (PI)
Mark Dalton (co-I), Nobuo Sato (co-I), Xiaochao Zheng (co-I, UVa)

Impact and strategic value to JLab's mission

■ Unique opportunity to explore matter – antimatter asymmetry

Antiquark matter asymmetry established at Fermilab

$$\rightarrow \overline{d} > \overline{u}$$

Strange matter-antimatter asymmetry predicted but not yet established

- → important for other fields, *e.g.* W mass determinations, supernova explosions, ...
- \longrightarrow most direct way to access asymmetry is through V-A interference $F_3^{\gamma Z}$ via e^+-e^- charge asymmetry
- JLab is only facility where this is feasible ... although signal is small and challenging to isolate with inclusive DIS
- \rightarrow new ideas to enhance γZ interference signal beyond that possible with observed single-lepton final state

potential for discovery of fundamental but elusive physics effect, with development of new research directions in theory & ML, with wider applications for JLab and EIC

Level of innovation

■ New physics analysis strategy based on recent developments in pQCD and ML

energy-energy correlators

 new observables, complementary to
 DIS and SIDIS programs

- measure scattered lepton, and energy of produced hadrons in final state
- related to "moments" of PDFs & TMDs (integrals over x at fixed angles)

<u>cannot</u> be carried out through existing programs

event-based ML analysis

- use event-level based observables (energy flow polynomials) to enhance γZ interference signal
- construct ML classifiers to discriminate between signal (s) and bkgd (no s)

cannot be carried out
through existing programs

traditional observables

• simulations for standard inclusive DIS with e^+ and e^-

<u>could</u> be carried out through existing programs

outcomes

- feasibility for discovering strange — antistrange asymmetry at JLab
- development of ML tools for hadron structure studies

Deliverables: timeline and milestones

Aim 1: R&D for nucleon

energy-energy correlator

observables for
electroweak probes

Aim 2: R&D for *ML-based event-level* observables

for electroweak physics

Aim 3: Development of baseline analysis with *classical* observables

Aim 4: Comparative studies of newly developed observables

Aims	Objective Number	Milestone		FY25			FY26			
7411113				Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	1	Develop a theory framework to access γZ interference effects using NEECs								
	2	Implement a computational framework to study NEECs								
	3	Simulate the reconstruction of NEECs at Jefferson Lab and the EIC								
	4	Perform impact studies for reconstructing the targeted physics using NEECs					*			
2	5	Develop an event-based theory framework to access γZ interference effects								
	6	Train ML models that maximize the γZ interference signal								
	7	Simulate event-level observables, such as energy flow polynomials and N-jettines basis								
	8	Perform impact studies for reconstructing the γZ interference physics using ML-assisted observables								
3	9	Simulate reconstruction of classical observables (charge asymmetries) at JLab and EIC								
	10	Perform impact studies for reconstructing the targeted physics								
4	11	Perform comparative analysis among the various impact studies (A1-A3) across all simulations from JLab12, JLab22, and EIC								

*expected publications

Budget and budget justification

Staff salary 25% Melnitchouk Staff salary 5% Dalton Staff salary 5% Sato Postdoc salary 100% Ph.D. Student 50% Ph.D. Student 50%

Requested Bu	Requested Budget for Effort by Investigator						
Name of Investigator	Role (PI, Co-I, etc.)	FY25 Budget (\$K)	FY25 Effort (% FTE)	FY26 Budget (\$K)	FY26 Effort (% FTE)		
Melnitchouk	PI	73.3	25	75	25		
Dalton	Co-I	10	5	10	5		
Sato	Co-I	10	5	10	5		
TBD	PD/Contri butor	124.5	100	126.6	100		
Sub	total for effort						
Equipment	Non-capital						
	Capital						
Subcontracts	TBD	48.4	100	48.4	100		
Materials/ Supplies		3.5					
Travel		7.5		7			

Budget	Total	FY25	FY26
(\$K)	555.0	277.7	277.3

Wally Melnitchouk (PI, JLab Theory) [25%]

— oversee project, develop theory framework for EECs

Nobuo Sato (co-I, JLab Theory) [5%]

— develop computational ML-based event-level framework, train ML models

Mark Dalton (co-I, JLab Physics) [5%]

- simulate reconstruction of EECs, classical observables at JLab/EIC

Xiaochao Zheng (co-l, U.Virginia) [collaborator]

— simulate reconstruction of EECs, classical observables at JLab/EIC

Postdoc (TBD) [100%]

- knowledgeable in EECs, energy-flow polynomials, Al/ML-trained
- simulate event-level observables, train ML models, perform impact & comparative studies

Richard Whitehill (ODU, PhD) [50%]

 develop theory framework for EECs, simulate reconstruction of EECs, perform impact & comparative studies

Experimental PhD student (UVa/JLab) [50%]

— simulate reconstruction of EECs, classical observables at JLab/EIC

Potential future funding (beyond LDRD)

- Anticipate future FOAs for AI applications in nuclear physics
 - → upcoming FOA expected fall 2024
 - extend research scope of event-level ML-based analysis for hadron structure studies

- Strategic planning for new research directions
 - nucleon EECs for hadron structure studies, broaden research scope of the Theory Center, attract new talent
 - → use of event-level analysis for future SCIDAC FOAs
 (QuanTom unify theory & experiment analysis)
 - maintain leadership for JLab and future EIC in 3D hadron structure studies