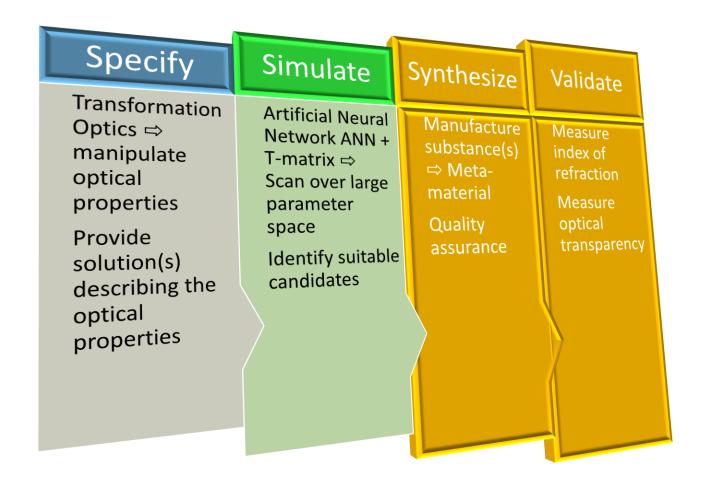

TOME – LDRD

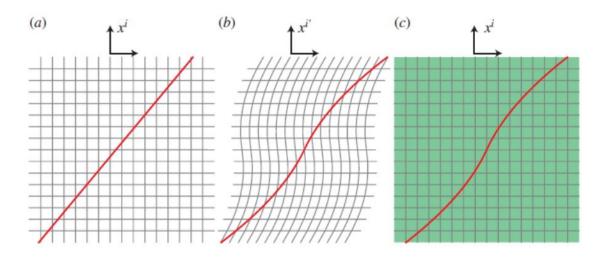
Transformation Optics Meta-Material

Klaus Dehmelt



Outline

- 1. Project description/Scope/Team
- 2. Impact and strategic value to the Laboratory's mission
- 3. Level of innovation
- 4. Deliverables with corresponding timelines and milestones
- 5. Budget and budget justification
- 6. Potential future funding (Beyond LDRD)



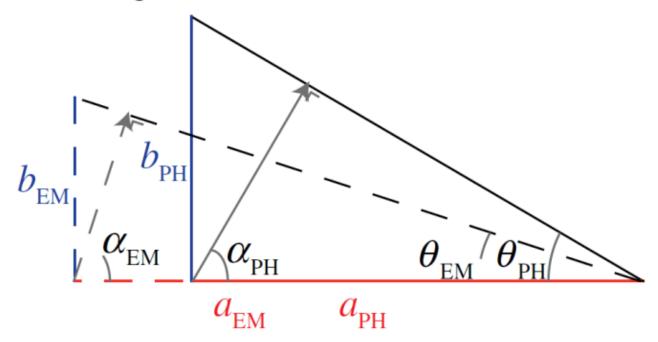
Goal ⇒ tailor electromagnetic features of a medium at will

- Spatially changing refractive index leads to changes in light propagation characteristics
 - E.g., Mirage
- Artificial media that have spatially changing optical properties can bend light in (almost) any manner
- Transformation optics ⇒ arbitrary anisotropic electromagnetic media

- (a) EM in Cartesian coordinate system
- (b) Same **EM** in deformed coordinate system x' = f(x, y); y'=y
- (c) PH, in which meta-material is implemented as of curved EM (b)

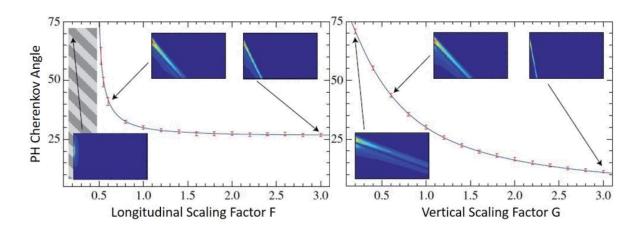
Goal ⇒ tailor electromagnetic features of a medium at will

- Spatially changing refractive index leads to changes in light propagation characteristics
 - E.g., Mirage
- Artificial media that have spatially changing optical properties can bend light in (almost) any manner
- Transformation optics ⇒ arbitrary anisotropic electromagnetic media

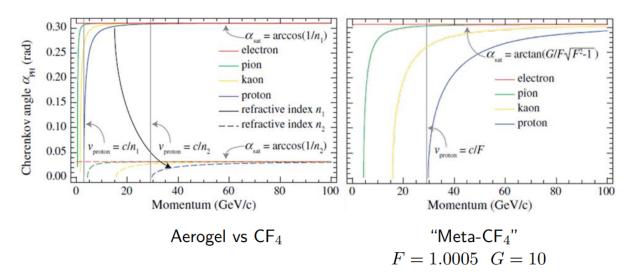

$$\frac{\varepsilon_{x,x}}{\varepsilon_0 \varepsilon_b} = \frac{\mu_{x,x}}{\mu_0} = \frac{g'(y)h'(z)}{f'(x)}$$
$$\frac{\varepsilon_{y,y}}{\varepsilon_0 \varepsilon_b} = \frac{\mu_{y,y}}{\mu_0} = \frac{f'(x)h'(z)}{g'(y)}$$
$$\frac{\varepsilon_{z,z}}{\varepsilon_0 \varepsilon_b} = \frac{\mu_{z,z}}{\mu_0} = \frac{f'(x)g'(y)}{h'(z)}$$

Cherenkov radiation obeys geometry of electromagnetic reality Cherenkov cone can be manipulated with material parameters → coordinate transformations

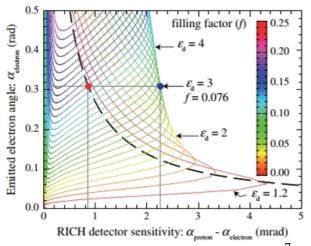
Inhomogeneous Maxwell equations with plane monochromatic wave as solution yields dispersion relation \to calculate Cherenkov angle in TOM

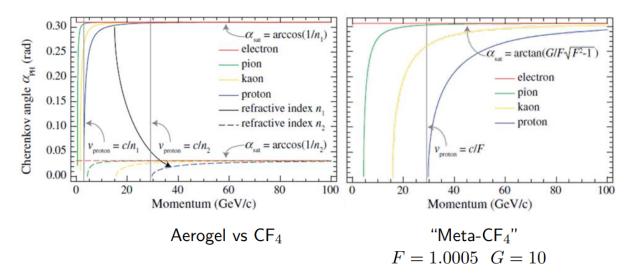

$$\tan(\alpha_{PH}) = \frac{k_y}{k_x} = \frac{G}{F} \frac{\sqrt{F^2 \epsilon_b \omega^2 / c^2 - k_x^2}}{k_x} = \frac{G}{F} \tan(\theta_{Ch,(Fn_b)})$$

 $\theta_{Ch,(Fn_b)}$: angle of Cherenkov radiation emitted in a medium with refractive index Fn_b

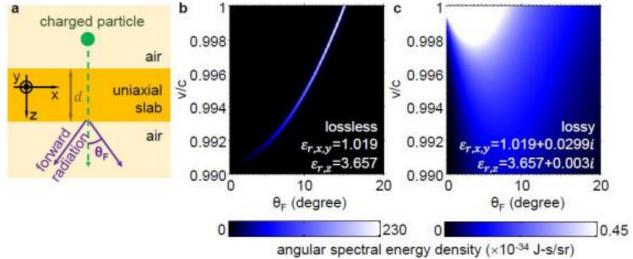

Compare to classical Cherenkov angle:

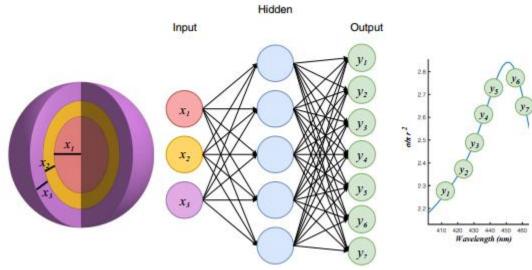
$$\theta_{Ch} = \arccos\left(\frac{1}{n\beta}\right) \text{ vs. } \theta_{Ch,n_b} = \arccos\left(\frac{1}{Fn_b\beta}\right)$$

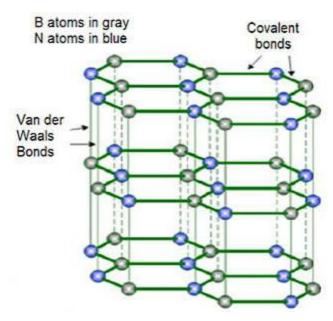

Full-wave numerical simulations of Cherenkov radiation $c/(n_b v) = 0.5$



Large anisotropy required for transformation not readily available in naturally occurring materials but can be obtained from electromagnetic structured materials ⇒ array of thin metallic discs embedded in dielectric medium




Large anisotropy required for transformation not readily available in naturally occurring materials but can be obtained from electromagnetic structured materials ⇒ array of thin metallic discs embedded in dielectric medium


Goal ⇒ identify suitable materials

- Simulate optical properties \Rightarrow T-matrix $\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{T}^{11} & \mathbf{T}^{12} \\ \mathbf{T}^{21} & \mathbf{T}^{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$
- Gauge results ⇒ Finite Element Analysis (e.g., COMSOL)
- Train the ANN
- Run ANN
 - Forward prediction ⇒ outputs the complete optical responses given the geometric parameters
 - Inverse retrieval ⇒ outputs the geometric parameters from the required optical responses

Goal \Rightarrow synthesize materials with anisotropic ε_r

- Required characteristics \Rightarrow large n_r and low optical absorption
- Potential candidates ⇒ HfO₂, GaN, BN or h-BN
- Chosen candidate ⇒ h-BN
 - BNNT Inc. in Newport News empowers groundbreaking nanotechnology applications in R&D through its innovative production of the world's highest-quality Boron Nitride Nanotubes
 - BNNT Inc. will arrange layers of bnnts in different geometrical configurations
 - BNNT Inc. and proponents will determine the optical characteristics

Project Description/Scope/<u>Team</u>

Team members

Team Member	Role	Project Contribution	Specific Aims
Klaus Dehmelt	PI	Guide the development of the ANN, support synthesizing new materials for RICH applications, oversee the project as PI	1 – 13
Carl Zorn	Co-I	Characterization using optical techniques	7, 9, 10, 13
TBD	Postdoc	Develop ANN, verify ANN, run ANN, support material synthesis, support material evaluation	1 – 7, 13

Commercial partner

Our Science Raw Materials

Applications

R. Roy Whitney, PhD

PRESIDENT

Previous CTO, CIO, and co-founder of US National Lab. Roy earned a PhD in nuclear physics from Stanford University. 17 patents.

View Profile

Impact and Strategic Value to the Laboratory's Mission

- A positive outcome of the project's objectives would establish a spectacular instance in detector physics
- A positive outcome of the project's objectives would place the laboratory in a favorable position regarding detector development and deployment for JLab, the EIC physics program, and beyond
- A positive outcome of the project's objectives would expand the portfolio of applications

Level of Innovation

- Transformation optics is a well-established mathematical and physical concept
- Solutions for meta-materials have been proven conceptually
- ANN exist for physical applications and is proven conceptually
- Many proposed applications on meta-materials on conceptual levels
- This proposal attempts to realize concepts and transform them into workable applications

If realization is successful, it will provide a spectacular innovation in the field of nuclear/particle physics detector applications and beyond – textbooks have to be expanded (L. Greiner, K. Kleinknecht, R. K. Bock, C. Grupen, D. Green, etc.)

Deliverables – Timelines and Milestones

ANN

Table 1 Milestone tasks for ANN

#	Milestone Task	Time
1.	Verify the ANN codebase against its functionality	Months 1 – 4
2.	Develop T-matrix and COMSOL-FEA gauging strategy	Months 5 – 9
3.	Implement the T-matrix method and produce training samples	Months 10 – 11
4.	Train ANN	Months 12 – 13
5.	Test inverse design	Months 14 – 15
6.	Identify feasible materials	Months 16 – 18
7.	Produce feasible materials and test with BNNT	Months 19 – 24

<u>BNNT</u>

Table 2 Milestone tasks for BNNT

#	Milestone Task	Time
8.	Investigate synthesis strategies	Months 1 – 6
9.	Measure optical properties: transparency	Months 7 – 8
10.	Measure optical properties: index of refraction	Months 9 – 10
11.	Investigate asymmetries	Months 11 – 12
12.	Investigate synthesis based on ANN outcome	Months 16 – 18
13.	Produce feasible materials and test	Months 19 – 24

TOME - LDRD 13

Budget and Budget Justification

Requested Budget for Effort by Investigator							
Name of Investigator	Role (PI, Co-I, etc.)	FY25 Budget (\$K)	FY25 Effort (% FTE)	FY26 Budget (\$K)	FY26 Effort (% FTE)	Total Budget (\$K)	Total Effort (%FTE)
Klaus Dehmelt	PI	76.778	20.0	78.122	20.0	154.900	20.0
Carl Zorn	Co-I	19.195	5.0	19.530	5.0	38.725	5.0
S	Subtotal for effort	95.973	25.0	97.652	25.0	193.625	25
Equipment	Non-capital						
	Capital						
Subcontracts	Postdoc/JLab	123.0	100	125.153	100	248.153	100
Materials/ Supplies	COMSOL	21.0				21.0	
	BNNT	35.0		65.0		100.0	
Travel		N/A		8.0		8.0	

Budget and Budget Justification

Name of Hire (strategic, staff PD)		Position Description/Justification	Projected Cost (\$K/FY)	Expected timeline	
TBD	Postdoc	Development of software, test measurements materials, and prototypes	123.0/FY25 125.2/FY26	Jan.'25- Dec.'26	

Name of Material	Description	Cost per FY	Total Cost
COMSOL FEA Package	Finite Element Software Package COMSOL Multiphysics COMSOL AC/DC module COMSOL RF Module COMSOL Wave Optics module	\$14k/FY25 \$7k/FY26	\$21k
Material (Synthesis) BNNT	Materials as described in Table 2	\$35k/FY25 \$65k/FY26	\$100k

Activity	Destination	Name of travelers	Estimated Cost
APS March Meeting 2026	Denver, CO	Postdoc	\$2000
12 th International Workshop on Ring Imaging Cherenkov Detectors 2026 (5 days)	(TBD)	Postdoc, PI	\$6000

TOME - LDRD 15 Jeffer

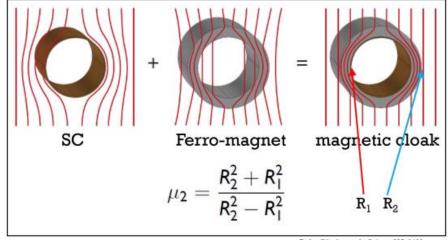
Potential Future Funding

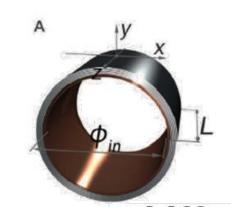
- If the proposed work has a positive outcome ⇒ funding agencies like DOE and NSF will engage to fund further R&D
- Commercial partners, spin-offs, SBIR, ...

Summary – Conclusions

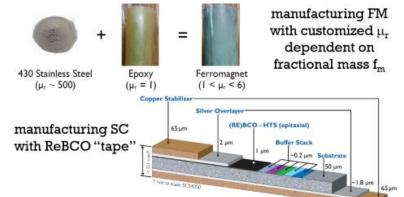
The target of this proposal is highly speculative and blue-sky research ⇒ but considerable amount of success!

Provided successful outcome:

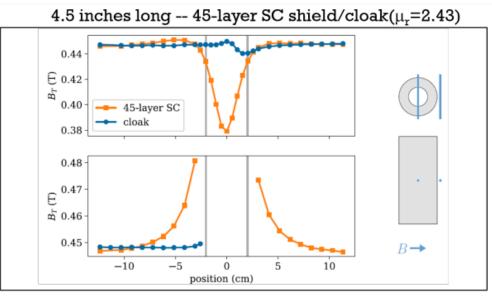

- Project description, scope, and team for this proposal are well-articulated and well-positioned
- Highest impact and strategic value to the Laboratory's mission
- Highest level of innovation
- Realistic deliverables with corresponding timelines and milestones
- Realistic budget and its justification
- Large potential for future funding



Meta-material Application



Fedor Gómöry et al., Science 335, 1466 (2012), DOI: 10.1126/science.1218316



SC tape @ R₁: ReBCO (cuprate HT-SC)

FM-tape @ R_1 to R_2 : $\mu_2 = 3.54$

Meta-material Application

 $\mu_{\rm r}$ effectively reduced due to higher fields

Meta-material Application

From

DOI: 10.1002/lpor.201700034

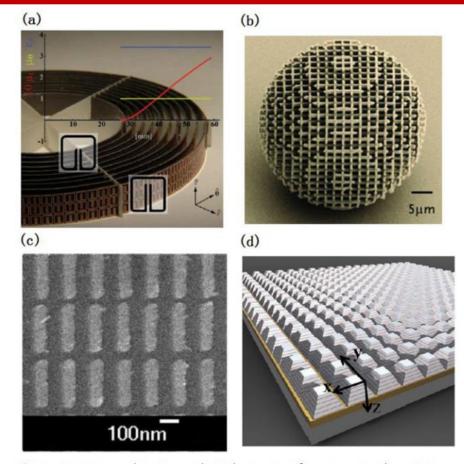


Figure 3. Various designs and applications of metamaterials. (a) Invisibility cloak in the microwave band (Reproduced with permission from Ref. [28]. Copyright (2006) Science). (b) 3D gradient control to realize the Luneburg lens at optical frequencies (Reproduced with permission from Ref. [129]. Copyright (2016) Laser Photon. Rev.). (c) Near-field subwavelength focusing (Reproduced with permission from Ref. [130]. Copyright (2009) Phys. Rev. A). (d) Deformable broadband absorber (Reproduced with permission from Ref. [131]. Copyright (2014) Laser Photon. Rev.).