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H|gh Lummosﬂy for Generahzed Darton Distributions

First experimental measurement with Started in 2001, PRL 87, 182002.
CLAS12 PRL 127, 262501 (2021) Now is the flagship physics program
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« DDVCS is absolutely needed to map out GPDs in x, & and t space

(x inaccessible with DVCS or TCS)
DDVCS cross section three orders of magnitude lower than DVCS
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« DDVCS is absolutely needed to map out GPDs in x, & and t space

(x inaccessible with DVCS or TCS)
* DDVCS cross section three orders of magnitude lower than DVCS 4



/. Zhao, Hadron Femtography Workshop 2023

EM Calorimeter
(forward[angle)

SoLID at 1037 luminosity (open geometry) m——— o
(large angle) MRPC
e Scint €

* 3D Hadron Imaging reee S -
e TMDs with SIDIS |
« GPDs (DVCS, TCS, DVMP, DDVCS) c

e J/yw production at threshold
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1m Light,Gas Heavy,Gas
Cherenkov  Cherenkov
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High Luminosity Exrientin Hall A

EM;Calorimeter
aaaaa

Challenge: High occupancies and rates in

SoLID at 108 detectors (~MHz/cm?)
e 3D Had
* TMD: |
. GPD: Need: Tracking detectors capable of

» Jfw proc running at these rates

This proposal: yURWELLSs



Micro-resistive Well (URWELL) Detector

. Well pitch: 140 um
Drift cathode Well diameter: 70-50 um
Copper top layer Copper dot Kapton thickness: 50 um
Driftgap "
4mm o
Resistive layer
R~100 MQ/0O
 d
R-WELL pcB (e e C LB B B O B B By
—

YT Y YY —

Readout electrode

Readout
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« URWELL is a Micro-Pattern Gaseous Detector
e Amplification in wells
e Spark protection due to resistive layer
 Advantages
 Intrinsic low-mass (low material budget)
* Good spatial and timing resolution
e Low production costs
* No frames needed in active area
* Disadvantages

* Operability under high particle fluxes > 1MHz/cm?2
* Relative new detector technology
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* Rate capabillity
e Stability of operation
 When does gain drop?

e Efficiency dependence on HV and rate

 When does efficiency reach plateau”

e What is the behavior when rates increase?

e Spatial resolution
* Dependence on HV and rate

Relative Gain: G/G,,

e XYU readout better than XY at high rates due to hit

ambiguities?
* Worse resolution at high rates?
 Dependence on gas mixtures
* Ar:CO2 (80:20)
e Ar:lsobutane (90:10)
« Ar:lsobutane:CO2 (93:2:5)
 What is the optimal gas?

K Gnanvo NII\/I A1047 (2023)
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Build 10cm x 10cm prototypes to study effects on “high-rate” capability. Vary

° Grounding schema (DLC) prototype DLC design readout gap width
1
« Readout schema A : 2D norma
_ B 2 2D normal
* (Gap width to cathode c | YU Bp——
Test of prototypes D ! 2D thin

« Cosmic

* Beam at Jefferson Lab
Development of prototype simulation
Hit reconstruction and tracking software
Validation of software with real data

10



Build 10cm x 10cm prototypes to study effects on “high-rate” capability. Vary

[+

° Grounding schema (DLC) : prototype DLC design readout gap width
« Readout schema A : 2D normal
_ B 2 2D normal
* (Gap width to cathode C 1 XYU normal
* Test of prototypes D ! 2D thin

« Cosmic

* Beam at Jefferson Lab
* Development of prototype simulation
* Hit reconstruction and tracking software
* Validation of software with real data

3 h

e Challenges in first year:
* delayed start postdoc (May 2024) —> 1st year budget ~$50k less spending
e Dbuilding and shipping of prototypes at CERN delayed to mid July
* No beam at Jefferson Lab at the end of first year

- J
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e Design of 10x10cm2 prototypes
e Several meetings with CERN during design process
* Modifications of design compared to initial plans after discussion with

expe rts Prototype Dots pitch Readout Readout strip pitch Well pitch
A 2cm XY X=Y=800um 140pm
B lem XY X=Y=800pm 140pm
C 2cm XYU X=Y=800um, U=1.6mm 140pum
D 2cm XY X=Y=800um (" 100pm )

* Decided to test prototype with smaller well pitch to increase gain at high
rates
e Other designs as planned - two versions of DLC structure and XYU readout

4 Dead area 1,305 mm >
! GND 0.767 mm

Cu0.094mm

DLC grounding - PEP dot XY Readout XYU Readout 19



e Jest stand
« GEM reference detectors
e Scintillators for triggering
o APV25/SRS readout

 (Gas panel

e Cosmic with GEMs
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Status of First Year Objectives (3)

e Development of analysis software using CLAS12 yRWELL data
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We are ready to take and analyze data when prototypes passed
initial tests of leakage currents!
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Status of First Ye

Objectives (4)

E—— — e = %75

:

* Integration of detectors in simulation

) i11@1I0:0I0 1010

AEREE

* Prototypes arrived

e Talk at QNP conference 2024 (https://indico.icc.ub.edu/event/180/
contributions/2797/) —> Proceedings to follow
e Submission to DNP 2024

15
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1. Year:

Build 10cm x 10cm prototypes to study effects on “high-rate” capability
Test of prototypes
 Cosmic

« Beam at Jefferson Lab x (need to be completed in 2nd year)

Development of prototype simulation

Hit reconstruction and tracking software

Validation of software with real data x (need to be completed in 2nd year with beam)

16
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1. Year:

Build 10cm x 10cm prototypes to study effects on “high-rate” capability
Test of prototypes
 Cosmic

« Beam at Jefferson Lab x (need to be completed in 2nd year)

Development of prototype simulation

Hit reconstruction and tracking software

Validation of software with real data x (need to be completed in 2nd year with beam)

2. Year:

Test 10cm x 10cm detectors with beam at Jefferson Lab

Validate software with beam data

Build 30cm x 30cm prototype with optimized design from small prototype tests
Implement 30cm x 30cm prototype into simulation

Test 30cm x 30cm prototype with cosmic and beam to understand scalability of design
Finalize design and software based on tests

17



Second Year Objectlves and I\/Il\estones*

2024 0025

e
Publication results small prototypes

Implementation of 30x30 prototype in software*

* Efficiency and resolution dependence on particle rates, HV settings and gas mixture
* Validation of simulations and reconstruction software
* Optimized and tested high-rate capable uRWELL design for high-luminosity experiments

End of project deliverable:

18



 Total 2nd year budget - $188k
* $140k personnel

FY Effort S arias
(% FTE) Responsibilities
Florian o) 15 Oversee project as Pl and work on design and test
Hauenstein of prototypes
Rafayel Co-P| 10 Development of simulation and reconstruction
Paremuzyan together with Postdoc, support prototype tests
Kondo Gnanvo Contributor 5 Design of prototypes, support testing of prototypes
Sara Development of software, test measurements of
i i Postdoc 80
Liyanaarachchi prototypes

« $40k materials and supplies

* large prototype ~ $30k

 test stand materials and transport ~ $10k
¢ $8k travel

19
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Q1: Testplan tor prototypes - what do we team

General GEM trackers Ig test stand are basellne detector for tracklng
Cosmic tests in EEL
e general functionality of prototypes
 efficiency and resolution dependence on HV at very low particle rates —> what we can
achieve under best case scenario
e (Gas mixture tests —> if bad with cosmic should be also bad for high rates
e (Possibly) Test with X-ray gun at UVA
e gain dependence on rate —> what is the maximum rate before gain drops
e rate limits on stable operation before beam tests
« Tests with beam in Hall B(A/C?) at large angle = kHz/cm particle rate
e establish stable operation conditions
 HV scans (efficiency, resolution, stability) —> all prototypes should work well at these
rates, HV dependence similar to cosmic
e gas mixture study —> Does one gas has unstable operation?
* Move detector to smaller angles = MHz/cm particle rate (probably move in couple of steps)
* Repeat the same measurements as at lower angles
e Learn:
e At which rate does efficiency drop” Similar to gain drop?
e Limits in operational stability?
 How does the resolution depend on the rate at similar HV?
* What is the effect of the significant hit ambiguities at larger rates”? XYU better than
XY
* Does more gain from more wells increase rate limit? 21
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Q2: Estimation of Particle

= B —

Solid PreCDR (https://solid.jlab.org/DocDB/0002/000282/001/solid-precdr-2019Nov.pdf) Table 24

estimated about 1.6 MHz/cm?2 rate for forward tracking detectors

CLAS12 Letter of Intent for high-lumi DDVCS:https://www.jlab.org/exp_prog/proposals/16/

LOI12-16-004.pdf, Rates seen in Fig 23 for forward tracker, it highly depends on particle type,

expected about 0.6 MHz/cm2 at 5 deg which is dominated by photons and their conversion.

CLAS12 SVT rate simulations (https://userweb.jlab.org/~ungaro/tmp/GEMC_SVT_review.pdf) gave

rates in SVT of 1.5GHz photons, 2.6 MHz e- and 1.4 MHz protons (other particles less) in the inner

layers. With a energy cut of 20keV this reduces to 56MHz, 1.4MHz and 1.4 MHz respectively at 10/35

luminosity. From here we can do some estimations for 10A37 luminosity:

o Just scaling from 10/35 gives 5.6 GHz photons, 140 MHz electrons and 140 MHz protons at
10137 for the whole surface of SVT

o  The surface size of the inner layer of the SVT is ~40cm * 2 * pi * 60cm = 15000cm™**2

o This gives a rate of 37MHz/cmA2 photons, 0.9 MHz/cm”2 electrons and protons at 10737
luminosity. The photon conversion rate is around 1% or lower which gives then a photon rate of
0.37 MHz/cmA2

o Qverall we should get around 2 MHz/cmA2 rate of particles in CLAS12 around the target at the
SVT

To conclude: All existing numberes from simulations and estimations give MHz/cmA2 rate of particles

in trackers at 10A37 luminosity

22
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Impact of PrOJect on JLabs SC|ent|f|C Mission

LDRD CaII for Proposals

| Proposals on a wide selection of potential topics in those areas are welcome. However, relevance to the following topics is given |
strong consideration in the evaluation of the LDRD proposals as they have been identified as being of strategic value to the future of
the Laboratory and would benefit from R&D:

e Advanced Detector Technologies: Areas of interest include development of advanced detector and related technologies
that facilitate novel approaches in capability, size, performance or cost for the broad TINAF science program - including science
\ at 22 GeV energies, detectors that can accept high luminosity beams, and detector applications in medicine and industry. J

» Strategic value for the lab to develop advanced detectors for high luminosity experiments
(>1037cm-1s1)

 CEBAF experiments at the luminosity frontier natural continuation of the 12 GeV physics
program - opens up new measurement like DDVCS

* High-rate yRWELL detectors
* Low material budget
* (Good resolutions
* Low production costs

* Synergy with recent developments in Detector & Imaging group

23



GPD Phase-space of Measurements

HERMES, CLAS, Hall A, JLAB12, COMPASS

Spin asymmetries (Im, x = §)
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Budget July
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Oct-23 Nov-23 Dec-23 Jan-24 Feb-24 Mar-24 Apr-24 May-24 Jun-24 Jul-24 Aug-24 Sep-24

YTD Spending 2 20 21 49 50 72 79 101 113 0 0 0
mmm Pending 0 0 0 0 0 0 0 3 3 0 0 0

Open Obligations 0 15 9 35 35 55 46 26 26 0 0 0
mm Expenses 0 0 0 0 4 9 14 18 24 0 0 0
. [ abor 2 4 6 7 9 10 13 27 39 0 0 0
e Funding 241 241 241 241 241 241 241 241 241 241 241 241
e 73-Mo Avg Projection

* Open Obligations
e urwell: $24k
e VXS crate: $20k
e |Labor expenses not on track due to delayed start of postdoc, mismatch of ~$50k
* Expectincreased work in the last quarter since prototype arrived —> detailed cosmic
tests
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