CTEQ-TEA Precision PDFs for the EIC Physics Bridge the LHC and EIC

Keping Xie

Michigan State University

Physics Opportunities at an Electron-Ion Collider XI Florida International University February 28, 2025

On behalf of the CTEQ-TEA (Tung Et Al.) Collaboration

Outline

- 1 Recent CTEQ-TEA PDF updates
- 2 EIC for precision PDFs
- 3 Nuclear corrections
- 4 Precision PDF inputs for the EIC physics

$\textbf{CT18} \rightarrow \textbf{CT25?}$

CT18(A/X/Z) PDFs [Hou, KX+, PRD'21]

- Inclusion of new LHC data: Drell-Yan [Sitiwaldi, KX+, PRD'23], top-quark pair [Ablat, KX+, PRD'24], jets [Ablat, KX+, PRD'25]
- Experimental tensions: Representative samplings [Courtoy, KX+, PRD'23], L2 sensitivity [Jing, KX+, PRD'23]
- Advanced polynomial and Al/ML: Bézier curves [Kotz+, PRD'24], latent representation [Hobbs+, PRD'25], XAL4PDF [Hobbs+, JHEP'25]
- Non-perturbative charm: CT18FC [Guzzi, KX+, PLB'23]
- QED photon PDF: proton [KX+, PRD'22], neutron [KX+, JHEP'24]
- Neutrino-nucleus scattering: GM NNLO [Gao+, PRD'22] and ZM N3LO [KX+, PRD'24], trident [KX+, PRD'24] and di-muon [incoming]
- Nuclear corrections: deuterium [Accardi, Jing+, EPJC'21]
- Lattice synergy: (dis)connected sea [Hou+, PRD'22], strangeness asymmetry [Hou+, PRD'23], gluon [Ablat, KX+, 2502.10630]
- Towards CT25 and a mid/long-term future
 - Approximate N3LO and theory uncertainty
 - Tolerance quantification
 - α_s update from PDF fits

• • • •

A lot of new LHC precision data: Drell-Yan [Sitiwaldi, KX+, PRD'23], tt [Ablat, KX+, PRD'24]												
ID		vnorimont	$N_{ m pt}$	$\chi^2/N_{ m pt}$								
		-xperiment		CT18	CT18A	CT18As	ATLA	Spdf21	MSHT20	NNPD	F4.0	
215	ATLAS	5.02 TeV W,Z	27	0.81	0.71	0.71		-	-	-		
211	ATL	AS 8 TeV W	22	2.45	2.63	2.51	1.	41	2.61	[3.50)]	
214	ATLA	S 8 TeV Z 3D †	188	1.12	1.14	1.18	1.13	(184)	1.45(59)	1.22(6	50)	
212	CM	IS 13 TeV Z	12	2.38	2.03	2.71		_	-	-		
216	LH	Cb 8 TeV W	14	1.34	1.36	1.43		-	-	-		
213	LH	Cb 13 TeV Z	16	1.10	0.98	0.83		-	-	-		
248	ATLA	S 7 TeV W, Z	34	2.52	2.50	2.30	1.24	(55)	1.91(61)	1.67(6	51)	
Total 3994/3953/3959 points 1.20					1.20	1.19	-	_	_	-		
-	Scale						$H_T/2$	$H_T/2$	$H_T/4$	$H_T/4$		
-	ID#	Data set		$N_{\rm pt}$	CT18	nTT1	nTT2	nTT1	nTT2			
-	573	CMS 8 TeV 2D	(p_T, y)	16	1.2	1.2	1.2	1.1	1.1			
-	580 ATLAS 8 TeV $p_T^t, m_{t\bar{t}}$ comb.				15	0.6	0.7	0.7	0.7	0.7		
-	521 ATLAS 13 TeV all-hadronic $y_{t\bar{t}}$				$t\bar{t}$ 12	-	1.0	1.0	1.1	1.1		
-	528 CMS 13 TeV dilepton $y_{t\bar{t}}$				10	-	0.8	0.8	0.5	0.7		
-	532 ATLAS 13 TeV I+j $y_{t\bar{t}}$				10	-	0.7	-	0.8	-		
-	587 ATLAS 13 TeV I+j comb.					-	-	0.7	-	1.1		
-	581 CMS 13 TeV I+j $m_{t\bar{t}}$					-	1.1	1.1	1.6	1.7		

--. _

4/23

New LHC data (continued): inclusive jets and di-jet [Ablat, KX+, PRD'25]

ID	Expt.	\sqrt{s}	$\mathscr{L}_{\mathrm{int}}$	$N_{\rm pt}$	R	Observable	$\mu_R,\ \mu_F$	Decorrelation		
New inclusive jet data										
553	ATLAS	8	20.3	171	0.4,0.6	$rac{\mathrm{d}^2 \pmb{\sigma}}{\mathrm{d} p_T \mathrm{d} y }$	p_T^j, \hat{H}_T	Yes		
554	ATLAS	13	3.2	177	0.4	$rac{\mathrm{d}^2 \pmb{\sigma}}{\mathrm{d} p_T \mathrm{d} y }$	p_T^j, \hat{H}_T	Yes		
555	CMS	13	33.5	78	0.4,0.7	$rac{\mathrm{d}^2 \pmb{\sigma}}{\mathrm{d} p_T \mathrm{d} y }$	p_T^j, \hat{H}_T	No		
New dijet data										
546	ATLAS	7	4.5	90	0.4,0.6	$rac{\mathrm{d}^2 \pmb{\sigma}}{\mathrm{d} m_{12} \mathrm{d} y^*}$	m_{12}	No		
547	CMS	7	5.0	54	0.7	$\frac{\mathrm{d}^2 \boldsymbol{\sigma}}{\mathrm{d} m_{12} \mathrm{d} y_{\max} }$	m_{12}	No		
548	CMS	8	19.7	122	0.7	$\frac{\mathrm{d}^3\sigma}{\mathrm{d}p_{T,\mathrm{avg}}\mathrm{d}y^*\mathrm{d}y^b}$	$m_{12}, p_{T,1} e^{0.3y*}$	No		
549	ATLAS	13	3.2	136	0.4	$rac{\mathrm{d}^2 \pmb{\sigma}}{\mathrm{d} m_{12} \mathrm{d} y^*}$	m_{12}	No		

More data, more precise PDFs?

Not realy!

- Different data might be not consistent with each other [CT18, Hou, KX+, PRD'21]
- The in tension data pull the PDFs to different directions [Sitiwaldi, KX+, PRD'23]
- As a balance, the PDF uncertainty might not decrease as much as what we expect [Mohan+, 2406.01664].

PDF parametrization: flexibility

- $f_q = a_0 x^{a_1} (1-x)^{a_2} P(x)$, where P(x) is polynomials
- \bullet We have tried out $\mathscr{O}(100)$ parameterizations for the CT18 PDFs $_{\rm [CT18,\,Hou,\,KX+,\,PRD'21]}$
- \bullet More flexible parameterization: Bézier curves $_{[Kotz+,\ PRD'24]}$ and AI/ML $_{[Hobbs+]}$

EIC precision QCD, complementary to LHC

EIC: sensitive to large-*x* **PDFs**

• 1-yr inclusive EIC dataset drives steep reductions in PDF uncertainties [EIC YR]

• Sensitive to large-x PDF, where LHC data is not precise enough

11 / 23

 $M_{\rm WH}$ [GeV]

Non-perturbative uncertainties

- Remaining uncertainties at large x: Higher-twist, target-mass corrections, etc [KX+, PRD'22]
- ullet The low- Q^2 structure functions: CB/CLAS, HERMES, $R=\sigma_L/\sigma_T$
- The neutron's photon PDF suffers for a large uncertainty, due to the imprecise of SF extraction, and nuclear corrections [KX+, JHEP'24]
- Can be generated to the heavy-nuclei's photon.

Intrinsic Charm (IC) puzzle

- The proton's intrinsic charm (valence-like) component: BHPS model $|uudcar{c}
 angle$ [Brodsky+, PLB'80, PRD'81]
- Both EMC F_2^c [CT14IC, Hou, KX+, JHEP'18] and LHCb Z + c [PRL'22] data prefer an IC component
- We analyzed various uncertainties and IC models $\langle x \rangle_{\rm FC} = (4.8^{+6.3}_{-4.8}) \cdot 10^{-3}$, while globally consistent with a zero IC [CT18FC, Hobbs, KX+, PLB'23], contradictory to NNPDF [Nature'22] (Unc. [Nadolsky, KX+, PRD'23])
- Precision measurement of F_2^c at EIC will help

Charged-current charm production and fragmentation

- Besides the neutral-current $F_2^{\,c}$ (probe IC), the charge-current $F_2^{\,c,\,W}$ can probe the strangeness $_{\rm [Hobbs+,\ PRD'21]}$
- HERA data is very imprecise, which awaits to be improved by the EIC
- Also useful for fragmentation function, synergy with many heavy-flavor measurement, such as LHCb $_{[KX+,\ SciPost'22]}$
- Important for the neutrino source determination at the Forward Physics Facility [KX+, Phys. Rept.'22, JPG'23]

PDFs at small x[also see talks of Li, Koychegoy, Gwenlan]

- CT18X takes a saturation model [Hou, KX+, PRD'21]
- CT18sx resum the $\ln(1/x)$ with BFKL [KX+, EPJP'24]

Resolve the F_L puzzle between H1 and ZEUS

15/23

- α_s from event shapes and N-jettiness
- An optimistic 40% precision improvement [EIC YR]
- Similarly for the heavy-quark mass m_Q

the C_{iq} coupling, and mixing angle [EIC YR] $A_{PV}^e = \frac{\mathrm{d}\sigma_L - \mathrm{d}\sigma_R}{\mathrm{d}\sigma_L + \mathrm{d}\sigma_R} \sim C_{iq} \sim \sin^2 \theta_W(Q^2).$

W-boson mass measurement

- PDF uncertainty is not enough to explain the CDF anomaly [KX+, Chin. Phys. C'22]
- $\langle m_T \rangle$ at CDF is mostly sensitive to the $d(\bar{d})$ at $x \sim 10^{-2}$, largely constrained by the DIS and Drell-Yan data on deuteron target, the Tevatron lepton charge asymmetry data
- TMD non-perturbative parameters and N3LL resummation effect is explored in [Isaacson, Fu, Yuan, PRD'24]
- Future EIC and LHeC measurement can help improve the M_W measurement [Britzger, EPJC'20]

New physics [Also see Hurley's talk]

- Charged lepton flavor violation [2102.06176]
- Leptoquark [1006.5063]
- Standard Model Effective filed theory [2107.02134, 2204.07557]
- Axion-like particles [2112.02477, 2310.08827]
- Dark Photon [2203.01510]
- Anomalous $Zb\,ar{b}$ coupling [2107.02134, 2112.07747]
- · · · [EIC YR, Snowmass Whitepaper]

Heavy neutral leptons [KX+, JHEP'23]

- The displaced vertex search probe small mass and small coupling
- The prompt search probe the large mass and large coupling
- Comparable to the LHC search

Neutrino scattering

- High-energy neutrino scattering is mainly through Deep inelastic scattering
- We know DIS very well, up to N3LO $_{[KX+,\ PRD'24]}$
- · However, the biggest uncertainty comes from nuclear corrections
- $\bullet\,$ EIC physics can help, including light C/O and the heavy Pb/W.
- $\bullet\,$ EIC charged-current cross section can also help the cross section measurement at a low $E_{\rm V}$

Nuclear PDFs [See Risse's talk]

- $\bullet\,$ EIC Extends the (x,Q^2) range for nuclear scattering data
- EMC effect and (anti-)shadowing
- Improvement of the nuclear PDFs

Photon from heavy nuclei

Heavy nuclei's photon includes the coherent, diffractive (elastic), and inelastic components.

 $\gamma = \gamma_{\rm coh}(Z^2) + \gamma_{\rm diff}(Z) + \gamma_{\rm inel}(Z+N).$

Coherent photon embraces a ${\mathbb Z}^2$ enhancement

- Neutrino trident [KX+, PRD'24], *W*-boson production [KX+, JHEP'24]
- Axion-like particles [2310.08827]

Magnetic form factor are normally treated as zero [SuperChic]

$$\begin{split} F_M(Q^2) &= 0, \ F_E(Q^2) = \left[F_p(Q^2)G_E(Q^2)\right]^2.\\ \text{where } G_E \text{ is the proton dipole or elastic form factor}\\ F_p(|\vec{q}|) &= \int \mathrm{d}^3 r e^{i\vec{q}\cdot\vec{r}} \pmb{\rho}_p(r),\\ \pmb{\rho}_p(r) &= \frac{\pmb{\rho}_0}{1 + \exp[(r-R)/d]}, \ \int \mathrm{d}^3 r \pmb{\rho}_p(r) = Z. \end{split}$$

- How good is this approximation?
- What is the size of magnetic form factor?
- How to account the nuclear corrections?

Lattice synergy [Also see Lin's talk]

- The lattice strangeness asymmetry is incorporated into the CT18As_Latt global fit [Hou+, PRD'23]
- Recently, we explore the lattice gluon data in the CT18 framework [Ablat, KX+, 2502.10630], and found a similar pull as the latest inclusive jet data from the LHC 13 TeV [Ablat, KX+, PRD'25]
- Many moments $\langle x^n \rangle_{q^{\pm}}$ are compared between lattice and global fits, which can be included directly in global fitting [Hobbs+, PRD'19].

Summary

- CTEQ-TEA has many updates since the release of the CT18 PDFs
 - We continuously include the latest LHC datasets: Drell-Yan, top-quark pair, inclusive jet.
 - Many tensions show up here and there, due to the precision of the experiemntal data.
 - Many schemes are tried out to resolve or relax the tensions: flexible PDF parametrization, interplay of experimental constraints with L_2 sensitivity, ePump profiling
 - Moving towards to (approximated) N3LO
- ullet The incoming EIC precision QCD data is complementary to LHC, low/intermediate Q^2 and large x
- EIC can reduce the non-perturbative uncertainties of the photon PDF at large x: target-mass corrections, higher twists, and coherent photon.
- EIC can potentially resolve the intrinsic charm puzzle, with the measurement of the F_2^c
- EIC can also help resolve the small-x F_L puzzle between H1 and ZEUS
- Precision measurements: $\alpha_s, \sin^2 \theta_W, M_W$
- New Physics searches: Heavy neutral leptons, leptoquarks, etc
- Constrain the high-energy neutrino-nucleus scattering, by reducing the nuclear PDF uncertainties
- Lattice synergies and fragmentation functions

The experimental F_L

[EPJC 2014]

 $R=F_L/(F_2-F_L)pprox {f \sigma}_L/{f \sigma}_T$ [PRD 2014]

- H1 and ZEUS do not fully agree with each other in the F_L measurement.
- H1 gives enhanced F_L , which is preferred by small-x resummation [1710.05935,1802.00064].
- ZEUS gives an opposite pull, preferred by *x*-scale description.
- It awaits to be resolved by the future precision measurements.