# Science at Jefferson Lab: Today and Future Plans

Patrizia Rossi

Physics Opportunities at an Electron-Ion Collider XI Miami, Florida International University (USA) Feb 24–28, 2025

TJNAF is managed by Jefferson Science Associates for the US Department of Energy



# Jefferson Lab at a Glance



CEBAF @ 22 GeV Positron Beam @ 12 GeV A Facility at the LUMINOSITY Frontier (up to  $10^{39}$  cm<sup>2</sup> s<sup>-1</sup>)

#### World-Class Electron Beam

CEBAF provides a high-quality, 12 GeV continuous electron beam with::

- High Intensity
- High Polarization

#### **Unique Experimental Facilities**

CEBAF supports 4 cutting-edge experimental halls with:

- State-of-the-art detectors
- Versatile experimental setups
- Detection of multiparticle in the Final State

#### Impactful Research

CEBAF has a history of groundbreaking discoveries, including

EIC will build upon this knowledge



# Today (and Tomorrow)

| Experimental Hall A                                                 | FY-2025 | FY-2026 |
|---------------------------------------------------------------------|---------|---------|
| E12-07-109 & E12-24-010: SBS GEP-V & High-Precision Measurement     |         |         |
| MOLLER Experiment Installation                                      |         |         |
| Experimental Hall B                                                 |         |         |
| Run Group L & E12-23-013: Tagged EMC Effect and SRC with ALERT      |         |         |
| E12-21-003 & 20-004: Hidden Sector New Particle X17                 |         |         |
| E12-20-004 Proton Radius II - Low Machine Energy Runs               |         |         |
| Experimental Hall C                                                 |         |         |
| E12-11-107: In-Medium Nucleon Structure Function with LAD           |         |         |
| E12-06-104: L/T Separations in SIDIS                                |         |         |
| E12-06-107: Pion Color Transparency                                 |         |         |
| E12-14-002: Nuclear R and E12-23-001 Polarizabilities               |         |         |
| E12-23-001: Polarizabilities & E12-22-001 - Low Machine Energy Runs |         |         |
| Experimental Hall D                                                 |         |         |
| GlueX Detector Upgrade                                              |         |         |
| E12-12-002 & 12-002A: GlueX Phase II with DIRC and JEF              |         |         |
| Hall Reconfiguration                                                |         |         |
| Other                                                               |         |         |
| Scheduled Accelerator Maintance                                     |         |         |
|                                                                     |         |         |

# Hall A – SBS: The Nucleon Form Factors Campaign



# MOLLER World-leading Measurement of Lepton-Lepton Electroweak Reaction



5

μ [GeV]

• Early CD-4 February 2027

# Hall B: Recent Result & Upcoming Experiments

First Measurement of DVCS on the Neutron with Detection of the Active Neutron



**nDVCS** : an important step toward the understanding of the contribution of the angular momentum of the quarks to the spin of the nucleon via Ji's sum rule, of which the GPD E is an essential, yet poorly known, ingredient. A comprehensive physics program to investigate the fundamental structure of the light nuclei

- What is the origin of the EMC effect?
- What is the partonic structure of a bound nucleon?
- How is the nucleon modified in nuclear medium?
- How are hadrons modified in nuclear medium?



This next generation nuclear measurements are realized by detecting low energy recoil nuclei

- A Low Energy Recoil Tracker (ALERT)
  - Hyperbolic drift chamber
  - Time-of-flight array
  - Target straw for  $H_2$ ,  $D_2 \& {}^4He$ , 30 cm active length, o min



# Hall C: Today & Tomorrow

7

#### E12-11-107 (EMC/SRC exp): Does the EMC Effect depend on nucleon virtuality?

Measure Bound F2 by tagging the SRC proton in D(ee'p) DIS and look for nuclear effects



### E12-06-104 (SIDIS exp): Precise measurements of $R=\sigma_L/\sigma_T$ in charged $\pi$ and K SIDIS on H and D targets



#### E12-24-001 (SIDIS exp): Nuclear Dependence R in SIDIS

- NO existing measurements
- Potential Impact on SIDIS results (dilution factor for polarized target)
- Exploratory measurement

 $R_{SIDIS} = R_{DIS}?$   $R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{\pi^{-}}?$   $R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{K^{+}}?$   $R_{SIDIS}^{K^{+}} = R_{SIDIS}^{K^{-}}?$ 

Projections for  $\pi$  SIDIS R on H (D) as solid (open) circles Red and blue are Cornell data



### Hall D - GlueX-II+JEF

#### Gluex-II (E12-12-002) Spectroscopy (46% done, 118 PAC days left)

• Upper limit for  $\gamma p \rightarrow \pi_1(1600)p$  photoproduction



- Using LQCD prediction for BR $(\pi_1 \rightarrow b_1 \pi)/BR(\pi_1 \rightarrow \eta' \pi)$
- Analysis of γp→ωππp, ωπ<sup>+</sup>π<sup>0</sup>Δ<sup>++</sup> mass spectra
- Projection to  $\gamma p \rightarrow \eta' \pi p$  (most promising for PWA)
- Limit of the cross section obtained is ≈σ(a₂(1320))

PRL133, 261903 (Dec 2024)

Photoproduction of  $\gamma p \rightarrow a_2(1320)^0 p$  cross section A milestone on the path toward search for hybrid mesons



JEF (E12-12-002A) Rare decays of  $\eta$  Search for weakly-coupled new forces in neutral mode.

- 0% done, 100 PAC days approved
- Requires an upgrade of FCAL: a crystal insert



### **CEBAF** Phased Upgrade

#### Phase 1:

- New injector (123 MeV e<sup>+</sup> & 650 MeV e<sup>-</sup>) in a former FEL ("LERF")
- Polarized positrons transported to CEBAF (proposed 12 GeV science program)





- Recirculating injector energy upgrade to 650 MeV electrons
- Replace one set of arcs on each side with new FFA permanent magnet arcs to upgrade to 22 GeV – no new RF needed! No new cryomodules needed!



### Ce+BAF: Realistic end-to-end Design & Funding Support



#### mA e<sup>-</sup> Photogun

• High current e⁻ source (<10 mA @ 10 MeV)

Long life time

Up to 90% polarization

- High Power Targets, Capture Cavity



#### JLAB NP R&D

- 2.1 FTE across CASA, CIS, OPS, SRF
- 0.5 FTE in CASA (Distinguished Grunder fellow)
- Support Degrader (former LDRD) to quantify CEBAF acceptance

#### LDRD program

- 2-year test improvements for highintensity (mA) polarized photogun
- 3-year strategic hire of positron model integrator role

#### NP FOA

- 2-year NP Futures concept of Tungsten Solid Target, CFD, Prototype Testing
- 2-year (SBIR) concept of GaInSn Liquid Target, Prototype Testing at LERF

#### HEP FOA

 3-year – US-Japan collaboration with SLAC/KEK to exchange e+/esource concepts







### 12 GeV Ce+BAF: Polarized Positron Beams

|  | Machine Parameter           | Electrons     | Positrons     |  |
|--|-----------------------------|---------------|---------------|--|
|  | Hall Multiplicity           | 4             | 1 or 2        |  |
|  | Energy (ABC/D)              | 11/12 GeV     | 11/12 GeV     |  |
|  | Beam Repetition             | 249.5/499 MHz | 249.5/499 MHz |  |
|  | Duty Factor                 | 100% cw       | 100% cw       |  |
|  | Unpolarized Intensity       | 170 µA        | > 1 µA        |  |
|  | Polarized Intensity         | 170 µA        | > 50 nA       |  |
|  | Beam Polarization           | > 85%         | > 60%         |  |
|  | Fast/Slow Helicity Reversal | 1920 Hz/Yes   | 1920 Hz/Yes   |  |
|  |                             |               |               |  |



### Physics Program with Ce+BAF



May the  $2-\gamma$  exchange be the cause of the proton FF discrepancy?

$$R_{2\gamma} \equiv \frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 + 4 \frac{\operatorname{Re}\left[\mathcal{M}_{1\gamma}\mathcal{M}_{2\gamma}\right]}{|\mathcal{M}_{1\gamma}|^2} + \dots$$

Beam charge asymmetries

 Two-photon exchange
 Deeply Virtual Compton Scattering

$$\sigma \approx |\mathcal{M}|^2 = \left| \right\rangle \cdots \left| \right\rangle^2 \pm 2 \operatorname{Re} \left[ \right\rangle \cdots \left| \right\rangle + \mathcal{O}(\alpha^4)$$

Annihilation processes

- Light dark matter searches



- Charged-current processes
  - Inverse beta-decay
  - Access strangeness with charm-tagging
  - Charged lepton flavor violation
  - Axial Form Factor





Approved 6 experiments for a total of 357 total PAC days (Hall A & C) (PAC day = two calendar day) 12



- Annual in person working group meeting
- Next March 24-26 at JLab



### 22 GeV Upgrade – Baseline under Study



 Imported a vendor's magnet mechanical design and overlaid it on the beam orbits to make sure there is clearance



- Prototype open-midplane BF magnet successfully built and evaluated for mechanical integrity
- >1.5 Tesla measured in good field region
- Field accuracy of  $10^{-3}$

Installation map in CEBAF – 30 installation locations of varying dose and radiation type (gamma vs. neutron)



materials in a radiation environment at CEBAF resembling their intended operational one (LDRD project started Oct. 1, 2023) **Construction** of a full-length permanent magnet (Lol to DOE)





### The 22 GeV Physics Program and the Project Development

14

#### WHY 22 GeV?

- A NEW territory to explore
- A BRIDGE between JLab @ 12 GeV and EIC
- CRITICAL to some measurement @ EIC
- A BETTER insight into our current program
- Bi-weekly meetings to refine the scientific case (2024)
- LNF Workshop Dec 9-13, 2024 (91 participants, 62 plenary talks, 6 parallel sessions)



A document outlining the progress of the scientific case will be available within a few months



A. Accardi<sup>1</sup>, P. Achenbach<sup>2</sup>, D. Adhikari<sup>3</sup>, A. Afanasev<sup>4</sup>, C. S. Akondi<sup>5</sup>, N. Akopov<sup>6</sup>, M. Albaladejo<sup>7</sup>, H. Albataineh<sup>8</sup>, M. Albrecht<sup>2</sup>, B. Almeida-Zamora<sup>9</sup>, M. Amaryan<sup>10</sup>, D. Androic<sup>11</sup>, W. Armstrong<sup>12</sup>, D. S. Armstrong<sup>13</sup>, M. Arratia<sup>14</sup>, J. Arrington<sup>15</sup>, A. Asaturyan<sup>16</sup>, A. Austregesilo<sup>2</sup>, H. Avakian<sup>2</sup>, T. Averett<sup>13</sup>, C. Ayerbe Gayoso<sup>13</sup>, A. Bacchett<sup>17</sup>, A. B. Balantekin<sup>16</sup>, N. Baltzell<sup>2</sup>, L. Barion<sup>19</sup>, P. C. Barry<sup>2</sup>, A. Bashir<sup>2,20</sup>, M. Battaglieri<sup>21</sup>, V. Bellini<sup>22</sup>, I. Bellov<sup>21</sup>, O. Benhar<sup>23</sup>, B. Benkel<sup>24</sup>, F. Benmokhtar<sup>25</sup>, W. Bentz<sup>26</sup>, V. Bertone<sup>27</sup>, H. Bhatt<sup>29</sup>, A. Bilinconi<sup>29</sup>, L. Bilorzycki<sup>30</sup>, R. Bijker<sup>31</sup>, D. Binosi<sup>32</sup>, D. Biswas<sup>3</sup>, M. Boër<sup>3</sup>, W. Boeglin<sup>33</sup>, S. A. Bogacz<sup>2</sup>, M. Boglione<sup>34</sup>, M. Bondi<sup>22</sup>, E. E. Boos<sup>35</sup>, P. Bosted<sup>13</sup>, G. Bozzl<sup>36</sup>, E. J. Brash<sup>57</sup>, R. A. Bricen<sup>53</sup>, P. D. Brindza<sup>10</sup>, W. J. Briscoe<sup>4</sup>, S. J. Brodsky<sup>30</sup>, W. K. Brooks<sup>24,40,41</sup>, V. D. Burkert<sup>2</sup>, A. Camsonne<sup>2</sup>, T. Gao<sup>2</sup>, L. S. Cardman<sup>4</sup>, D. S. Carman<sup>2</sup>, M. Carpinelli<sup>42</sup>, G. D. Cates<sup>43</sup>, J. Caylor<sup>2</sup>, A. Christonber<sup>1</sup>, E. Christ<sup>22</sup>, E. Chudakov<sup>2</sup>, F. Cishan<sup>23</sup>, P. Chatagona<sup>7</sup>, J. J. Chose-Martinae<sup>44</sup>, B. D

- Established a small study group (11 people) from Jab management, Physics, Accelerator and Theory Divisions, and 3 representatives of the user community, meets monthly
- Define the roadmap for the development of the positrons and the 22 GeV beams technology
- Ultimate outcome is a pre-CDR in ~2 years



### 22 GeV: A New Window into the World of XYZ States



#### Next steps:

- Develop reasonable non-resonant background models to include in the MC
- Evaluate the contribution of open charm channels



## Imaging Studies: the JLab Advantage

Jefferson LAB : IDEAL PLACE TO CARRY OUT IMAGING STUDIES in the non-perturbative region

High Luminosity + High Polarized beam and target + High Resolutions State-of-the-art detectors + Versatile experimental setup + Multiparticles FS detection

The increased energy will enable several advancements, including:

- 1. Multidimensional studies of the evolution of 3D observables with the energy scale (Q<sup>2</sup>)
- 2. A unique opportunity to measure  $\gamma^*_{L}$  and  $\gamma^*_{T}$  contributions to observables at higher  $Q^2$
- 3. A unique opportunity to evaluate the contribution of various processes (i.e. diffractive  $\rho$ ,..) at higher  $Q^2$

 $\rightarrow$  All the above will enable us to evaluate the assumption of the TMD factorization

 $\rightarrow$  2. & 3. will serve as a bridge between lower energy experiments and EIC, providing critical information for interpreting EIC results



# Measurements of $\alpha_s$ with JLab@22 GeV

 $Q^2 (GeV^2)$ 

**Jefferson Lab** 

10

It is the most important quantity of QCD, key parameter of Comparison with JLab at 6 and 11 GeV the SM, but (by far) the least known fundamental coupling: CLAS EG1dvcs (< 6GeV) 3jorken Sum  $\Delta \alpha_s / \alpha_s \simeq 10^{-2}$ Expected EG12 (JLab < 11 GeV) Expected JLab (< 22 GeV) Large efforts ongoing to reduce  $\Delta \alpha_s/\alpha_s$ Estimate EIC Full sum No "silver bullet" experiment can exquisitely determine \*\*\*\*\*  $a_s \Rightarrow$  Strategy: combine many independent measurements 0.175 Good prospects of measuring precisely  $\alpha_s$  (Mz) at Missing Bjorken sum strength due to 0.15 JLab@22 GeV with Bjorken sum rule: unmeasured low-x (not accounting for EIC): ~10% **<u>Bjorken sum rule</u>**:  $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 - \frac{\alpha_s}{\pi}\cdots\right]\right]$ 0.125 Missing Biorken sum strength due to unmeasured low-x Gain in the measured Bjorken 40% to 55% 0.1 Q<sup>2</sup>-dependence of  $\Gamma^{p-n}(Q^2)$  provides **a**<sub>s</sub>. sum strength due to  $11 \rightarrow 22 \text{ GeV}$ unmeasured low-x Uncertainties from pQCD truncation and Higher-Twists remain small 0.075 Gain in the measured Bjorken  $\alpha_{\rm c}(M_{\rm Z}) = 0.1123 \pm 0.0061$ Compared to EIC & 3 most precise experimental determinations in PDG 0.05 sum strength due to  $6 \rightarrow 11 \text{ GeV}$ EIC alone JLab@22 GeV+EIC  $\Delta \alpha_s / \alpha_s \simeq 6.1 \times 10^{-3}$ ±4.2(uncor.) ± 3.6(cor.) ± 2.6(theo.)] × 10^{-3} 0.025 NNPDF31 Abbate (T) Verbytskyi (2j) 0 0.125 0.110 0.115 0.120 0.130 $\alpha_{s}(M_{7}^{2})$ 



# Conclusions

- The CEBAF uniqueness to run experiments at the luminosity frontier provides a powerful tool to understand the structure and dynamics of the strong interaction in the non-pQCD regime.
- An impactful experimental program is ongoing at 12 GeV which lays the foundation for future studies with even greater sensitivity.
- Jefferson Lab is indeed exploring future upgrades to CEBAF: a positron beam and an energy upgrade to 22 GeV.
- Proposals are being accepted by the Program Advisory Committee for positron science (6 approved and more to come!) and a strong science case for an energy upgrade is emerging which would allow for a deeper exploration of QCD, particularly in the valence quark region, and would provide crucial data for the upcoming Electron-Ion Collider (EIC).







# **Notional CEBAF and EIC Efforts on One Chart**

- Accelerator team has worked up an early schedule and cost estimate
  - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
  - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source dev shown
- EIC Project is shown

| Activities                      | Fiscal Year |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
|---------------------------------|-------------|----|----|----|----|----|----|----|----|----|----|-------|------|-------|----|----|----|----|----|
|                                 | 24          | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35    | 36   | 37    | 38 | 39 | 40 | 41 | 42 |
| Moller (MIE, 413.3B, CD-2/3)    |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| SoLID (LRP, Rec 4)              |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| Positron Source (R&D)           |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| CEBAF Upgrade preCDR/preplan    |             |    |    | -  |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| Positron Project (potential)    |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| Transport e+                    |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| 22 GeV Development (R&D)        |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| 22 GeV Project (potential)      |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| EIC Project (V4.2, CD-1, CD-3A) |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
|                                 |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
| CEBAF Up                        |             |    |    |    |    |    |    |    |    |    |    |       |      |       |    |    |    |    |    |
|                                 | 21          |    |    |    |    |    |    |    |    |    |    | leffe | erso | n I a | b  |    |    |    |    |