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Outline

1 Brief overview of the role of meson structure in understanding EHM and our visible Universe

O JLab 12 GeV and improving the ©t*/K*/nt® electroproduction data set and tagged DIS
o L/T separated cross sections and pion and kaon form factor extractions
o Tagged DIS and resolving and cross-checking pion PDF issues at high-x; kaon SF extractions

U Electron-lon Collider (EIC) —a game changer

U Exciting imminent opportunities to collect additional data for light mesons beyond JLab 12 GeV
o JlLab 22 GeV

M Ongoing efforts extending into 3D light hadron structure — GPDs and TMIDs —in
theory/experiment



What Do We Know: Mass of the Proton, Pion, Kaon

Visible world: mainly made of light quarks — its —
MeV mass emerges from quark-gluon interactions. 0=

Proton NS

Quark structure: uud
Mass ~ 940 MeV (~1 GeV) ;
Most of mass generated by dynamics.
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Gluon rise discovered by HERA e-p G Epesosoenae
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) Fraction of overall proton momentum
carried by quark or gluons

Quark structure: ud Quark structure: us

Mass ~ 140 MeV M ~ 490 MeV

Exists only if mass is dynamically @ 1 ass =
enerated Ny Boundary between emergent- @ \ @S)

Emoty or full of Ig ns? ' and Higgs-mass mechanisms. &

ply or Iuff of giuons More or less gluons than in pion?

proton the EIC will allow determination of an important term
contributing to the proton mass, the so-called “QCD trace anomaly”

pion and the kaon the EIC will allow determination of the quark «
and gluon momentum contributions with the Sullivan process.

.C. Aguilar et al., Pion and Kaon structure at the EIC, arXiv:1907.08218, EPJA 55 (2019) 190. 3
J. Arrington et al., Revealing the structure of light pseudoscalar mesons at the EIC, arXiv:2102.11788, J. Phys. G 48 (2021) 7, 075106.



Insight into Hadron Structure and Mass through Mesons

Understanding pion/kaon is vital to understand the dynamic generation of hadron
mass and offers unique insight into EHM and the role of the Higgs mechanism
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U Emergent hadron mass (EHM)
U Interference of emergent hadron mass & Higgs mechanism
U Higgs mechanism

Mass budget for nucleons and mesons are vastly different

o Proton (and heavy meson) mass is large in the chiral limit — expression of
Emergent hadronic mass (EHM)

o Pion/kaon: Nambu-Goldstone Boson of QCD: massless in the chiral limit
o chiral symmetry of massless QCD dynamically broken by quark-gluon
interactions and inclusion of light quark masses (DCSB, giving pion/kaon mass)
o Without Higgs mechanism of mass generation pion/kaon would be
indistinguishable
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Notable difference between proton and pion valence
quark distributions
- Difference between meson PDFs: direct
information on emergent hadron mass (EHM)
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Pion and Kaon Structure — Need for more data

O A lot of recent exciting theoretical developments on light meson structure in meson structure

O Many reports at workshops since 2018, e.g., the most recent CFNS workshop in 2024
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bosons; provide a forum to discuss the development of
consistent frameworks to describe QCD infrared dynamics
with continuum and lattice methods; coordinate efforts
focused on reliable prediction of TMDs, GPDs,
fragmentation functions and comparisons with analogous
proton quantities - addressing the meson-baryon
universality; innovate existing experiments design; access
new ideas and opportunities for EIC experiments to extract
multi-dimensional NG bosons PDFs
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The Pion in 3D — Spatial Imaging

Lot of recent theory interest in the Sullivan process and calculations of meson structure
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The Pion in 3D — Momentum Imaging
Lot of recent theory interest in the Sullivan process and calculations of meson structure

PRD 105, LO71505 (2022); PRD 104
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FIG. 1. The conditional TMD PDF's for the pion (left) and

proton (right) as a function of br for various z values (in-
dicated by color) evaluated at a characteristic experimental
scale Q = 6 GeV. Each of the TMD PDFs are offset for visual

purposes.

P. Barry, L. Gamberg, W. Melnitchouk, Moffat,
Pitonyak, A. Prokudin, Phys. Rev. D 108 (2023)
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Accessing Pion/Kaon Structure Information

Sullivan

Hard scattering from virtual meson cloud
of nucleon

/

Elastic EM
FF

- SF (and PDF) f/7r*
J extractions,

'\

Drell-Yan

Quark of pion (e.g.) annihilates with
anti-quark of proton (e.g.), virtual
photon decays into lepton pair

1 Pion/Kaon elastic EM Form Factor
o Informs how EHM manifests in the wave function

o Decades of precision F_ studies at JLab and recently
completed measurement in Hall C for F_ and also F

o EIC offers exciting kinematic landscape for FF extractions
1 Pion/Kaon Structure Functions

o Informs about the quark-gluon momentum fractions



Accessing meson structure through the Sullivan Process

Progress with elastic FF: Experimental studies over the last
decade have given confidence in the electroproduction method

Sullivan Process

Elastic EMFF DIS F; SF yielding the physical pion form factor
3 - X Take data covering a range in —t and
(@) g )
i * A AN compare with theoretical expectation
¥
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. . R. J. Perry et al., PRC100 |
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evolve slowly so that a well-constrained % Verify that the pion pole diagram is the
+ dominant contribution in the reaction

mechanism

Sullivan processes can provide a valid pion target. +4
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Phys.Rev. C 97 (2018) 7, 015203 m%, 1
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Pion and Kaon Form Factor Measurements at JLab

PionLT experiment (completed in 2022):
» L/T separated cross sections at fixed x=0.3, 0.4,
0.55 up to Q?=8.5 GeV?
» Pion form factofat Q2 values up to 8.5 GeV?
» Additional datajffrom KaonlT experiment

ot
o
T

Projected uncertainty
| for this point

Projected uncertainty for

I §L ]
0.2 § an EIC measurement ]

0.1%
f Z-Q Yao, D. Binosi, C.D. Roberts (2024)
ool arXiv:2405.04681 ]
0 5 10 15 20 25 30
Q%/GeV?

Spokespersons: Dave Gaskell (JLab), Tanja Horn (CUA), Garth Huber (URegina)

KaonLT experiment (completed in 2018/19):
» Highest Q? for L/T separated kaon electroproduction cross section
» First separated kaon cross section measurement above W=2.2 GeV

Unseparated Cross Section d*c do,  dor doyr dorr
[ =&—+— 2 1
- ndtdqb Sdt+dt+ e(e+1) T cos¢p +¢ T

LT Separated Cross Section[ -,

Unseparated Cross Section [nb/GeV?]

]
o] - > —~
o Firstlook at the N

unseparated and
separated cross sections
at Q?=3 GeV?, W=3.14
GeV

o Separated cross sections
have been extracted;
KaonFF will follow if
warranted by data

-t [GeV?]

Projected Uncertainties for Fy

Q?Fi(Q?)IGeV?

Spokespersons: Tanja Horn (CUA), Garth
Huber (URegina), Pete Markowitz (FIU)
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Pion and Kaon SF through TDIS Measurements at JLab

TDIS Measurements - Unique to JLab

Sullivan Process

ol N

arXiv:1208.40

Hard scattering from virtual
meson cloud of nucleon

8 <W2 <18 GeV?
1<Q2<3GeV2
0.05< x <0.2

Need small -t to
extrapolate to
pion pole

Very low
momentum
recoiling hadrons
(60 - 400 MeV/c)

o Tagthe “meson cloud” — need high luminosity
o Well-established technique, e.g., BONUS
o Pion flux contribution dominant in JLab kinematics

. —\\— Scaﬁ:‘:d
68 event — reconstruct x, Q2, W2, also My of recaoiling \ S| B
hadronic system D222 G T
11 GeV Calorimeter
, , , 50uA
BT _ dio(ep — € Xp )/dgo(ep —e X)AzAt N FI(z,0?, 2, t)AzAt. fngenoid
dzdQPdzdt dzd(? F3(z, Q%)

Tagged structure function
a direct measure of the
\mesonic content of nucleons

FQT(xtha Z, t) =

Neutral Pion

H(e,e’precoil)X Detect {e’

D(e,e’precoil)X Detect{g] H(e,e’mp)X

Charged Pion Kaon

Undetected

Undetected @k . X
5 18
0w <X e0" on &% ° v
p o9 — 0
[t K0 Tag @or T @ (18]
@ 4 o ags Ao @ Tags
PR U ps G0 (v ¥ )
Q@ Pla
Independent Check, add to sparse data Expected world first Expected world first
Electron arm — SuperBigbite High rate multiple time projection chamber (mTPC)
48 D48 Dipole Lac to tag recoiling/spectator hadrons
Turget and mTPC “17“‘ “—’7 ——  CAD/design from UVa, N. Liyanage, K. Gnaivo

Tracking, dE/dx

o TDIS will be a pioneering experiment that will be the first
. direct measure of the mesonic content of nucleons.
/ o The techniques used to extract meson structure function

will be a necessary first step for future experiments 11




World Data on Pion Structure Function

HERA: showed Sullivan at low x
Xmin fOr EIC

Pion sea region, low Bjorken x, high Q2 1 ~
6<Q2<100GeVz; 1.5e4<x<3.0e2

EIC kinematic reach down to a x = few 103
Lowest x constrained by HERA leading n
DESY 08-176 JHEPOG6 (2009) 74

xu (x)

DY: Large x Structure of the Pion

Initial observations: o5
» PDF~ (1-x) asx ->1 L K W - ptp— X
éosoj ’ &ﬁi %Ei\ﬂ

» Agrees with
structureless model

0.10 =/ & E615 aiN Drell-Yan 4GeV \ !g

",

oo U - )u(zN)

\

» Differs from pQCD G o
prediction of (1-x_)?
0‘4 LI T T ‘l’ _“-
03 4/ } {* {
: /
.f‘ v
i \
0.2 \\ i .
\ {
A \*{
A
L DSE-BSA, this work 27 GeV® \ )
0.1 ®  E615 nN Drell-Yan 16.4 GeV’ £y \\*‘H -
H — — — Expt NLO analysis 27 GeV* EY \\
- — - — DSE (Hecht et al.) 27 GeV? N \3;
=== Aicher et al. 27 GeV’ SN\ ]
| | | AN
0‘8.0 0.2 0.4 0.6 0.8 1.0

X

[C.D. Roberts, IRMA Lect. Math. Theor. Phys.
21 (2015) 355; arXiv:1203.5341 (2012)]

L -
0.60 0.80 1.0

1 Model tensions, pQCD,
Dyson-Schwinger, Light
Front, Instanton,...

O NLO gluon resummation

effects

[Aicher, Schdifer, Vogelsang, Phys. Rev.
Lett. 105, 252003 (2010)]; [L. Chang et
al., Phys. Lett. B 737 (2014) 23]

Jefferson Lab TDIS can
provide important

verification
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Projected JLab TDIS Results for &, K Structure Functions

Jefferson Lab 12 GeV - experiment C12-15-006/006A

TDIS with SBS: Spokespersons: D. Dutta, T. Horn, C. Keppel, P. King, N. Liyanage,
\/High luminosity R. Montgomery, K. Park, B. Wojtsekhowski,
4
~0.5 ———mm———————7————7——— =05 =T r T rTd Tl rrrTLrr"
50 pAmp, -3; . E615 N Drell-Yan x : A
o bl : e :
-4 = 3X1O36/ sz S g': [ - Glgt?fg ;I:;'r‘ametrization 1 =:¢ [ - Glggil'?l;: ;I:g'r‘ar?'l't'atrizoar:ion for = |
0.4} - Dyson-Schwinger Eq. o E 0.4} - Dyson-Schwinger Eq. for = |
v'Large acceptance - ] 8 -
~70 msr _ C) kaon |
. 4 Mval. f T i
Important for small cross sections S " cucd Y gl

Pion and Kaon F2 SF
extractions in valence regime

0.2} §

[ ¥ 70.75xDSE

0.1 0.1

o Independent charged pion SF
o First kaon SF _ "y
o First neutral pion SF % 02 04 06 08 1 0 02 04 06 08 1

| Projected uncertainties Projected uncertainties

Projections based on phenomenological pion cloud model
T.J. Hobbs, Few Body Syst. 56 (2015) 6-9

Essentially no kaon data currently
J.R. McKenney et al., Phys. Rev. DD 93 (2016) 05011



JLab 22 GeV: Opportunities for TDIS 7, K Structuere

Tagged DIS in the JLab era study group: Dipangkar Dutta (MSU), Carlos Ayerbe-Gayoso, Rachel Montgomery

(U. Glasgow), Tanja Horn (CUA), Thia Keppel (JLab), Paul King (OU), Rolf Ent (JLab), Patrick Barry (JLab)

A0.5 T T T T v T v I T v v 1 v v N T v i i '-‘-0-5 T T | I
5; | o E615 xN Drell-Yan 3_5> L = 11 GeV Proj e 22 GeV Proj
S. | = 11GeVProj e 22GeV Proj = —__Dyson-Schwinger Eq.
>< | ---- GRV-P parametrization 2
0.4} ~— Dyson-Schwinger Eq. i 0.4 [ - ]
] 0.3 7]
0.2 N
0.1H 3 -
L *' \
.4' ““"
0 -
0 0.2 0.4 0.6 0.8 1 0.6 0.8 1
X Xk

O TDIS with 22 GeV beam also enables access to TMDs
o Measurement of SIDIS from a pion target — requires
additional instrumentation for detection of an
additional pion (ongoing effort)
1 Higher statistics above the nucleon resonance cut
would enable access to pion DVCS

Multiplicity
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Global PDF Fits and Demand for more Data

L Combined Leading Neutron/Drell-Yan analysis for PDF fitting, with novel MC techniques for uncertainties (JLab JAM)

L Non-overlapping uncertainties — tension at large x

0.6

B valence
N o
B clue/10

—~ 041 py model de -
P-
iy DY+LN DY
0.3
HH'E DY +LN
= o2 TDI
DY M

2f(x)

0.001 Dol 01

From: Arrington et al JAM
2021 J. Phys. G: Nul. mmm +EIC
Part. Phys. 48 075106

0.0

001 01 04 06 08

Mom. Fraction carried by sea/glue/valence

- 0.4
T._-.) sea glUE valence P.C. Barry, N. Sato, W.
> 0.3 =l Melnitchouk, C-R Ji (JAM
—8 Collaboration), PRL 121
N 0.2 SR (2018) 152001
=
E 0.1 -
-
= —

0 0.1 02 03 04 05 06 ($ﬂ>

QO Yet, different basis light front quantization (BFLQ) technique finds

agreement in PDF evolution between DY and DIS
J. Lan, C. Mondal, S. Jia, X. Zhao, J.P. Vary, arXiv:1907.01509 (2019)

» More data needed

JExcellent opportunity for more data with EIC
» Kinematic bridge between HERA and high-x with wide

coverage in X
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EIC and Sullivan Process SF Measurements

Good Acceptance for TDIS-type Forward Physics! Low momentum nucleons easier to measure!

EIC Yellow Report ! , i
104 . Copmn 53 £ w

D'“Ilur
Fon

FQaEr
o0

z{m)

Far Forward

et+tp—oe +X+ n | (for pion structure)

9 30 5 ESOO

O EIC design well suited for HERA-style pion/kaon SF measurements
[ Scattered electron detected in the central detector

[ Leading hadrons = large fraction of initial beam energy = far
forward detector region

o Far-Forward detectors particularly important (reaction

products with sufficient

detector kinematics and 4 momenta)
region
Example: acceptance forp’'ine+p > e’ +p’ + X
/ﬁbdu/ Khalek et al., Nucl. o \ e
Oﬁ' " acceptance 7EUS
Phys. A 1026 (2022) 122447 De’ce(:to"S / 1 ‘n' _Jeading Proton Spectrometer
b Ro'r"‘ﬁ“"_\:ots . . .

BO ] Far Forward detection region :
eam""m ZC]DC must detect'the recoiling I
> ® - baryon and its decay _ lﬁ"
” a

. E 104100 Gev E" 161275 GeV
20 1y 200
> >

15
S
10

K o e [/ Huge gain in acceptance for forward tagging....

precision to achieve the

|
B2 03 04 05 06 07 08 09 03 04 05 o 1
X (Pﬂn:\/P'""") - xl.

desired resolution for meson e e _
. Acceptance in diffractive peak (X;>~.98)
structure studies. ZEUS: ~2%

JLEIC: ~100% (also covers much higher X; than ZEUS)
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EIC Pion/Kaon SF — Experimental Considerations
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U For pion/kaon structure the kinematic phase space is:
(x,Q?,-t). Acceptance and reconstruction resolution

for the reaction particles is required

U Studies were conducted using the EIC_mesonMC
event generator and G4 for detector acceptance and
response and t-distributions, Dt vs t were obtained

U Focus so far: ep and measuring cross section for:
o F,”(n*) tagged by n
o F,X(K*) tagged by A° decay
U Settings e x p(GeV): 5x41, 5x100, 10x100, 10x135,

18x275

Reconstruction of —t from the detected " and e tracks

50n41

2<Q?<12

10 <Q2<20

55 < Q2 < 65

0.00
000 001 002 003 004 005 006 007 0.08 009

001 002 003 004 005 0.06 007 008 009 010

At

100n100 2<0Q?<12

10 < Q%2 <20

25<Q%2<35

0.25

015
0.10 %25,
oos«?

55 < Q2% < 65

?

0.00
000 001 002 003 004 005 006 007 0.08 0.09

001 002 003 004 005 006 007 008 009 010

At
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EIC Pion/Kaon SF Measurements

B -~
Far Forward Off-Momentum 4
; Detectors, -~
region ‘\f"ﬁnma“ pots
BO-tracker _—_ ; -

Beam line elements 7
IF . Off-Marmentum
Detectors

- i ‘ E——E’EE:E.'" -Eé_l o= f, ZDC

_eaniy '- e Detector requirements:
simulation -bcm
of leading towers o For m-n:
eEZﬁETaT » Lower energies (5 on 41, 5 on 100) require at least 60 x 60 cm?
Fom [F*Ci*ijh;j]fd Trotta » For all energies, the neutron detection efficiency is 100% with the planned ZDC

o For m-n and K*/A:
» All energies need good ZDC angular resolution for the required -t resolution
» High energies (10 on 100, 10 on 135, 18 on 275) require resolution of 1cm or better

Geantd simulation of A decay events for F2* o K*/A benefits from low energies (5 on 41, 5 on 100) and also need:
=_I ." _mfs____:‘f“““‘“*,'“"“'r"_“""“" LA » A—n+m0 : additional high-res/granularity EMCal+tracking before ZDC — seems
Larnbda-spe | pion was o8] in Dipole ) doable _
=“H e m————— e ] 55 — » A - p+ m : additional trackers in opposite direction on path to ZDC — more
I : challenging
I_IllH, P i B — o Standard electron detection requirements
0l s w21 (o e ) _ o Good hadron calorimetry for good x resolution at large x

‘ﬁ - N S—— -
1, Richard Trotta (CUA) 18



EIC Pion SF Projections
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J. Arrington et al., J.Phys.G 48 (2021) 7, 075106

Detailed studies for Kaon SF ongoing with Meson SF simulation campaign

10 GeV x 35 GeV

T=240 G
10

0.5

0.4

~— 0.3

0.2

0.1

0.0

102

JAM
E FIC

001

01

0.4

0.6 0.8

1 SF shown calculated at NLO using pion PDFs

U Projected data binned in x(0.001) and Q2 (10 GeV?)
o Blue = projections
o Green = uncertainties for luminosity 100 fb
o x-coverage down to 1072
o Unprecedented mid-large x coverage, wide x/Q?

L Similar SF analysis can be extended to the kaon (in progress)
and expect similar quality

 Detailed comparison between pion/kaon and gluon contents
possible with coverage and uncertainties

J Reduce uncertainties in global PDF fits
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Kaon structure functions — gluon pdfs

J Based on Lattice QCD and DSE calculations the
kaon glue and sea distributions are similar to
those in the pion at the scale of existing e
measurements.

Projected uncertainties for measurements at EIC

» A calculation predicts that the gluon light-

front momentum fraction in the kaon is ~ £ 0.8} el \
g == Tl
— -

1% less than that in the pion and the sea ® ~L.
fraction is ~ 2% less 0.6}

Z-F Ciu et al., Eur.Phys.J.C 80 (2020) 1064, 1

L Differences exist between pion and kaon glue and . . , , ,
sea on the valence quark domain, where the 0.0 0.25 0.50 0.75 1.0
current quark mass is playing a role.

X
O EIC could provide data to shed light on this — Z-F Ciu et al., Eur.Phys.J.C 80 (2020) 1064, 1
projected uncertainties for the ratio are shown A.C. Aguilar et al., Eur Phys.J.A 55 (2019) 10, 190
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Pion Form Factor Prospects @ EIC

"’VW,% e 1. Models show a strong dominance of o, at small -t at large Q2.
na) 7 " 2. Assume dominance of this longitudinal cross section
fx* 3. Measure the n/=* ratio to verify — it will be diluted (smaller than unity) if

!

& o7 is not small, or if non-pole backgrounds are large

p(k) t n(k)

ﬁ 1 . 1 1 1 -
e 0.6 8 oo e aed) - O Assumed 5 GeV(e’) x 100 GeV(p) with an
cl JLab (6 GeV) . . .

o % Lab (projected 12 GeV errors) B o integrated luminosity of 10 fb-1/year, and
0.5 - int T - e .
similar luminosities for d beam data

d R=c,/c; assumed from VR model and assume
that © pole dominance at small t confirmed in %H

v/t ratios

1 Assumed a 2.5% pt-pt and 12% scale systematic

0.1- Hutauruk Cloet & Thomas BSE+NJL |-
Nesterenko & Radyushkin QSR . . . N
, Roberts et al Dyson=Schwinger uncertainty, no systematic uncertainty In the
0’0 } . I , J.P.IBL. de Mtlelo et al Inght Frolnt QFT d I b . . I
0 10 20 30 moael subtraction to isolate o
2 2
A. Bylinkin et al., NIMA 1052 (2023) 168238 Q° [GeV7]

Can we measure the kaon form factor at EIC? Or only through L/T separations
emphasizing lower energies? Not clear — needs guidance from JLab 12- GeV.
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EIC Meson Structure Functions — further observables

e T ) 1 | Sullivan DVCS
§ | il P B S seems measurable
— el at the EIC
ey g™ LT B T J.M.M. Chavez et al. Rev.Mex.Fis.Suppl.
e 5 B o B o] 3 (2022) 3, 0308099; Phys.Rev.Lett. 128
o ] o o e T (2022) 20, 202501;Phys.Rev.D 105 (2022)
e el T T Tl T el 9,094012

Science Question

Key Measurement[1]

Key Requirements[2]

What is the trace anomaly contribution
to the pion mass?

Elastic J/4 production
at low W off the pion.

e Need to uniquely determine exclusive process
et+p—e +at +J/T + n (low -t)

e High luminosity (10%41)

e CM energy ~70 GeV

Can we obtain tomographic snapshots of the pion in
the transverse plane? What is the pressure
distribution in a pion?

Measurement of DVCS off pion target as
defined with Sullivan process

® Need to uniquely determine exclusive process
et+p—=e +at + v+ n (low-t)

e High luminosity (1034F)

e CM energy ~10-100 GeV

Are transverse momentum distributions
universal in pions and protons?

Hadron multiplicities in SIDIS off a pion
target as defined with Sullivan process

» Need to uniquely determine scattered off pion:
e+p—e+h+ X+ n (low-t)

e High luminosity (1031+)

® e-p and e-d at similar energies desirable

o CM energy ~10-100 GeV

J. Arrington et al., J.Phys.G 48 (2021) 7, 075106
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Summary

1 Meson structure is essential for understanding EHM and our visible Universe
o Meson structure is non-trivial and experimental data for pion and kaon structure functions is extremely
sparse
O JLab 12 GeV will dramatically improve the nt*/K*/n° electroproduction data set
o Pion and kaon form factor extractions up to high Q? possible (~9 and ~6 GeV?)
o L/T separated cross sections important for transverse nucleon structure studies
[ There are very exciting imminent opportunities to collect additional data for light mesons
UTDIS @ 11 GeV JLab - provides data for resolving and cross-checking pion PDF issues at high-x and
provides kaon SF extraction in an almost empty kaon structure world data set
JEIC - Potential game-changer for this topic due to large CM range (20-140 GeV); Large x/Q? landscape for
pion/kaon SF; Potential to provide definite answers on different gluon distributions in pion/kaon
W Design of the far-forward region is important
Qinitial studies for pion SF; ongoing studies for kaon SF
1 Ongoing efforts extending into 3D light hadron structure — GPDs and TMDs — in theory/experiment
UTDIS @ 22 GeV JLab could offer new opportunities including possible SIDIS from pion target
measurements
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