Experimental Opportunities using AI/ML at the EIC

Cristiano Fanelli

POETIC XI, Feb 24-28, 2025

- This is not an ePIC talk, though I will frequently reference ePIC.
- I will not cover all ongoing AI/ML efforts in the EIC, particularly in ePIC, where most AI/ML activities are still in early stages.
- Some examples are drawn from other experiments or inspired by AI4EIC discussions (<u>https://eic.ai</u>) and Allaire, C., et al., <u>Computing and Software for Big Science 8.1 (2024): 5</u>].
- The talk primarily explores experimental / data analysis perspectives, showcasing immediately available ML-based approaches that could be widely adopted for the EIC science.
- I will not specifically delve into AI/ML for streaming readout, as it warrants a separate talk. However, I will highlight relevant connections and implicitly address aspects of near real-time analysis.

AI/ML is Ubiquitous

(2)

<u>Experimental Opportunities for EIC</u>

• AI/ML is ubiquitous in HEP and is increasingly shaping NP too.

A. Boehnlein, M. Diefenthaler, CF et al., Machine learning in nuclear physics, Rev. Mod. Phys. **94**, 031003 (2022) and references therein

2025

(3)

Computing and Software for Big Science 8.1 (2024): 5.

• The EIC is being realized during the AI revolution (and the genAI wave), and will be operating in the next decade. The EIC science aims to integrate AI/ML across all phases of the experiment, from design to operations.

Al-powered data collection

Machine learning (ML) techniques and artificial intelligence (AI) will be key for the data processing and analysis in ePIC. The ePIC detector will take data using a revolutionary streaming data acquisition system without the need for a traditional hardware trigger. AI/ML techniques will "teach" computers to make intelligent decisions about which electron-ion collisions to study to ensure that ePIC captures the data that's relevant to the physics questions scientists want to answer. ML and AI will be applied at all levels — for example, for calibrating detectors and for reconstructing collision events. This real-time analysis and feedback will enable quick diagnostics and optimization of the detector as well as significantly faster access to physics results.

From https://www.bnl.gov/eic/epic.php

Experimental Opportunities

1. Fast, High-Fidelity Simulations – Emphasis on accurate and efficiently accelerated detector response modeling

POETIC XI, 2025

(4)

- 2. Enhanced PID: Near real-time reconstruction of complex patterns across full kinematic ranges
- 3. (Bonus) Data-Driven Learning from Real Data Directly leveraging high-purity real data (when available)
- 4. Event-Level Holistic learning from (all) available event-level information
- 5. Uncertainty Quantification Understanding and managing uncertainties in ML-based analysis
- 6. Event-Level Uncertainty Quantification Combining (1) and (2) for more robust event-level insights
- 7. Distributed Multi-Objective Optimization for Detector Systems Leveraging distributed MOO for detector design, alignment, and calibration while learning tradeoff solutions in a constrained multi-parameter space
- 8. Agentic Scientific Workflows Multimodal AI assistance with specialized agents for tasks such as experimental shift-taking, data analysis, and EIC science interpretation

AI/ML for Cherenkov Detectors

 Cherenkov detectors constitute the backbone of PID (DIRC, dRICH, pfRICH)

POETIC XI. 2025

(5)

- They represent a <u>major simulation bottleneck</u> in that optical photons involve multiple photons that need to be tracked through complex surfaces (<u>S. Joosten's talk</u> at AI4EIC) → need for fast simulations
- All Cherenkov detectors rely on pattern recognition of ring images in the reconstruction, which may become particularly complex like in the case of the DIRC → need to enhance reconstruction

Desiderata:

- Reconstruction at the "event-level" rather than "track-level" (e.g., two tracks with overlapping patterns in the same optical box) N.b. over 10% of SIDIS events involve at least two charged tracks with momenta above 1 GeV/c detected simultaneously in one sector of the hpDIRC
- Possibility of learning directly from real data the detector response.
- Faster algorithms to cope with near real-time analysis

<u>Cherenkov Detectors: DIRC example</u>

Two optical boxes, containing distilled water and highly reflective focusing mirrors

6 x 18 PMT (8 x 8 pixels) array for photon detection. Provides location and timing information for photons

POETIC XI, 2025

(6)

<u>Goal: Characterize hit patterns from K^{+}/π^{+} as a function of $\langle |p| \rangle$, $\theta \rangle$, $\phi \rangle$ (track)</u>

Deep(er)RICH: Fast Sim with NF

Architecture: Normalizing Flow (NF)

- Density Transformation Define a bijective function and apply a change of variables, conditioning on kinematics parameters to maximize likelihood of expected hit pattern under a base distribution
- **Hit-Level Learning** Model conditioned on kinematic parameters $(|p|, \theta, \phi)$
- Agnostic to Photon Yield Ensure model independence from photon yield
- Abstract away Fixed Input Size Address NF limitations with discrete distributions; data preprocessing transform DIRC readout (row, col) to (x,y) in mm and uniformly smear over PMT pixels

CF, J. Giroux, J. Stevens. "Deep(er)RICH" Machine Learning: Science and Technology 6.1 (2025): 015028.

POETIC XI.

2025

Simulation is fast - $O(0.5)\mu s$ per hit (effective)

(hpDIRC standalone sim)

Deep(er)RICH: PID

Position

- Individual tracks do form "images" in optical boxes
 - Sparse point representations
- Possibility of overlapping hits
 - Same *x*,*y* different times
 - Construct these as images as FIFO
 - Tends to be low percentage of overlap

- Hierarchical Vision Transformer (Swin) encoder style feature extraction
 - Windowed attention higher throughput
- Combine information through CNN utilize skip connections for different resolutions
- Inject kinematics as concatenated information to DNN

Deep(er)RICH: PID

POETIC XI, 2025

CF, J. Giroux, J. Stevens. "Deep(er)RICH"

PID is fast - $O(9)\mu s$ per track with transformer (effective)

Bonus: NF for PID. This method is slightly slower given additional computation needed

(GlueX DIRC sim)

<u>Event-level Reco: DIS example</u>

DIS is governed by the four-momentum transfer squared of the exchanged boson Q^2 , the inelasticity y, and the Bjorken scaling variable x.

POETIC XI, 2025

(10)

These kinematic variables are related via $Q^2 = s \cdot x y$, where s is the square of the center-of-mass energy.

$$s = (k+P)^2$$
, $Q^2 = -q^2$, $y = \frac{q \cdot P}{k \cdot P}$, and $x = Q^2/(sy)$. Kinematics

The expected collision rate for ep DIS 18X275GeV is 83 kHz. More info can be found at this link.

DIS Kinematics:Traditional Methods

- Conservation of momentum and energy over constrain the DIS kinematics and leads to a freedom to calculate x, Q², y from measured quantities
- Each method has advantages and disadvantages, and no single approach is optimal over the entire phase space. Each method exhibits different sensitivity to QED radiative effects
- Once (real) higher-order QED effects are considered, various methods yield different results and the calculated quantities for Q², y and x are not representative for the γ/Z + p scattering process at the hadronic vertex.

Summary of basic reconstruction methods

2025

Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, heta]$	$1 - \frac{\Sigma_e}{2E_0}$	$rac{E^2\sin^2 heta}{1-y}$	$rac{E(1+\cos heta)}{2y}$
Double angle (DA) $[6, 7]$	$[E_0, heta,\gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2}+\tan\frac{\theta}{2}}$	$4E_0^2\cot^2rac{ heta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0, \Sigma, \gamma]$	$rac{\Sigma}{2E_0}$	$rac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$[E, heta, \Sigma]$	$rac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2 \sin^2 \theta}{1 - y}$	$rac{E(1+\cos heta)}{2y}$
IDA [7]	$[E, heta, \gamma]$	$y_{ m DA}$	$\frac{E^2 \sin^2 \theta}{1 - y}$	$rac{E(1+\cos heta)}{2y}$
$E_0 E \Sigma$	$[E_0, E, \Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$rac{Q^2}{2\Sigma}$
$E_0 heta \Sigma$	$[E_0, heta, \Sigma]$	y_h	$4E_0^2\cot^2rac{ heta}{2}(1-y)$	$rac{Q^2}{2\Sigma}$
$ heta\Sigma\gamma$ [8]	$_{[heta,\Sigma,\gamma]}$	$y_{ m DA}$	$rac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
Double energy (A4) [7]	$\left[E_{0},\!E,\!E_{h} ight]$	$\frac{E-E_0}{(xE_p)-E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$_{[E,\Sigma,T]}$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$rac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
E_0ET	$[E_0, E, T]$	$\tfrac{2E_0-E\mp\sqrt{E^2-T^2}}{2E_0}$	$rac{T^2}{1-y}$	$rac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0, E, \Sigma, heta]$	$y_{ ext{I}\Sigma}$	$Q_{1\Sigma}^2$	$rac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0, E, \Sigma, heta]$	$rac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities: E_0 (electron-beam energy), E and θ (scattered electron energy and polar angle), Σ and γ (lon-gitudinal energy-momentum balance, $\Sigma = \sum_{\text{HFS}} (E_i - p_{z,i})$, and the inclusive angle of the HFS). Alternatively, the A4 method makes use of the HFS total energy E_h . Shorthand notations are used

Deeply Learning DIS

POETIC XI, 2025

DIS beyond the Born approximation has a complicated structure which involve QCD and QED corrections

- Use of DNN to reconstruct the kinematic observable x, Q², y in the study of neutral current DIS events at ZEUS and H1 experiments at HERA.
- The performance compared to electron, Jacquet-Blondel and the double-angle methods using data-sets independent of training
- Compared to the classical reconstruction methods, the DNN-based approach enables significant improvements in the resolution of Q² and x

0004	2.6	NN, Bin 2		DA, Bin 2	2
	2.5		-		-
	2.4	110	-	199	-
	2.3	/		1	
	2.2				
	2.1		8.8		
5	R	T Din 2		ID Din 2	
Lun	2.6	л, ын 2		JB , B II 2	
	2.5		t		
	2.4		-		-
	2.3	-	+		
	2.2	1.19			
			+		
	2.1	0.0 0.0	0.00	0.0 0	
	2.1	2.3 2.4	2.52.2 L(truno	2.3 2.	4 2.5 Litmuo
	2.1	2.3 2.4	2.52.2 $L_{ m true}$	2.3 2.	$\overset{4}{L_{ ext{true}}}$
Bin	2.1 2.2	2.3 2.4 Resolu	2.32.2 Ltrue	2.3 2. Resolu	4 2.5 L _{true}
Bin	2.1 2.2 Events	2.3 2.4 Resolu	L_{true} tion of $\times 10^3$	2.3 2. Resolution $\log Q^2/1$ ($\begin{array}{c} 4 & 2.5 \\ L_{true} \end{array}$
Bin 1	2.1 2.2 Events 301780	2.3 2.4 Resolu log <i>x</i> , NN: 70	L_{true} tion of $\times 10^3$ EL: 83	2.3 2. Resolution $\log Q^2/10^2$ NN: 35	4 2.5 L_{true} ution of GeV^2 , ×10 EL: 35
Bin 1	2.1 2.2 Events 301780	2.3 2.4 Resolution Resolution 2.4 Resolution Resolution 2.4 Resolution 2.4 Resolu	Lion of $\times 10^3$ EL: 83 DA: 103	2.3 2. Resolution $\log Q^2/10^2$ NN: 35 JB: 203	$\begin{array}{c} 4 & 2.5 \\ L_{true} \\ \end{array}$ ution of GeV ² , ×10 EL: 35 DA: 62
Bin 1	2.1 2.2 Events 301780 350530	2.3 2.4 Resolu log <i>x</i> , JB: 180 NN: 69 B: 167	Lion of ×10 ³ EL: 83 DA: 103 EL: 82	2.3 2. Resolution 2010 Resolution 2010 NN: 35 JB: 203 NN: 40 ID: 102	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
Bin 1 2	2.1 2.2 Events 301780 350530	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 167 NN: 62	L 2.2.2 Ltrue tion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 FL: 120	2.3 2. Resolution 2/10 NN: 35 JB: 203 NN: 40 JB: 192 NN: 5 ⁵	4 2.5 <i>L</i> true ution of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 52
Bin 1 2 3	2.1 2.2 Events 301780 350530 138456	2.3 2.4 Resolu log x, JB: 180 NN: 69 JB: 167 NN: 98 IB: 138	Lion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100	2.3 2. Resolution 2.2 (1997) Resolution 2.2	4 2.5 Ltrue ution of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 53 DA: 64 EL: 53
Bin 1 2 3	2.1 2.2 Events 301780 350530 138456 74844	2.3 2.4 Resolu log x, JB: 180 NN: 69 JB: 138 JB: 138 NN: 67	L: 83 DA: 103 EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84	2.3 2. Resolution 2.1 Resolution 2.3 2. NN: 35 JB: 203 NN: 40 JB: 192 NN: 55 JB: 150 NN: 44	4 2.5 Ltrue ution of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 43 DA: 64 EL: 35 DA: 67 EL: 46
Bin 1 2 3 4	2.1 2.2 Events 301780 350530 138456 74844	Resolu log x, NN: 70 JB: 180 NN: 69 JB: 138 NN: 67 JB: 138 NN: 67 JB: 117	L: 83 DA: 103 EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84 DA: 100 DA: 100 DA: 100 DA: 100	2.3 2. Resolution Resolution Resolutio Resolution Resolution Resolution Resolution Resolution Reso	4 2.5 L _{true} ution of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 53 DA: 77 EL: 46 DA: 63
Bin 1 2 3 4 5	2.1 2.2 2.2 2.2 2.2 2.2 301780 350530 138456 74844 31043	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 167 NN: 98 JB: 138 NN: 67 JB: 117 NN: 64	Lion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84 DA: 100 EL: 84 DA: 700 EL: 91	2.3 2. Resolution Resolution log Q²/10 NN: 35 JB: 192 NN: 55 JB: 150 NN: 44 JB: 138 NN: 36	4 2.5 Ltrue ution of GeV ² , ×100 EL: 35 DA: 62 EL: 43 DA: 64 EL: 53 DA: 77 EL: 46 DA: 77 EL: 46 DA: 44 EL: 41
Bin 1 2 3 4 5	2.1 2.2 2.2 2.2 2.2 301780 350530 138456 74844 31043	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 138 NN: 67 JB: 117 NN: 64 JB: 102	Lion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84 DA: 71 DA: 73	2.3 2. Resolution 2015 100 100 100 100 100 100 100 100 100	4 2.5 <i>L</i> true attion of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 53 DA: 64 EL: 53 DA: 64 EL: 43 DA: 63 EL: 41 DA: 63 EL: 41
Bin 1 2 3 4 5 6	2.1 2.2 2.2 2.2 301780 350530 138456 74844 31043 11475	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 167 NN: 98 JB: 138 NN: 67 JB: 117 NN: 64 JB: 102 NN: 53	tion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84 DA: 77 EL: 91 DA: 79 EL: 91	2.3 2. Resolution of the second seco	4 2.5 <i>L</i> true attion of GeV ² , ×10 EL: 35 DA: 643 EL: 463 DA: 643 EL: 46 DA: 63 EL: 41 DA: 63 EL: 35 EL: 36
Bin 1 2 3 4 5 6	2.1 2.2 2.2 2.2 301780 350530 138456 74844 31043 11475	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 167 NN: 98 JB: 138 NN: 67 JB: 117 NN: 64 JB: 102 NN: 53 JB: 83	Lion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 EL: 84 DA: 77 EL: 91 DA: 73 EL: 79 DA: 61 DA: 73 EL: 79 DA: 73 EL: 79 DA: 74 EL: 79 DA: 74 EL: 79 DA: 74 EL: 79 DA: 70 EL: 79 DA: 70 EL: 79 DA: 70 EL: 79 DA: 70 EL: 79 DA: 70 EL: 70 EL	2.3 2. Resolution Resolution Resolutio Resolution Resolution Resolution Resolution Resolution Reso	$\begin{array}{c} 4 & 2.5 \\ L_{true} \\ \\ ution of \\ GeV^2, \times 100 \\ EL: 35 \\ DA: 62 \\ EL: 43 \\ DA: 64 \\ EL: 53 \\ DA: 65 \\ EL: 46 \\ DA: 63 \\ EL: 41 \\ DA: 53 \\ EL: 41 \\ DA: 53 \\ EL: 45 \\ DA: 45 \\ \end{array}$
Bin 1 2 3 4 5 6 7	2.1 2.2 Events 301780 350530 138456 74844 31043 11475 3454	2.3 2.4 Resolu log x, NN: 70 JB: 180 NN: 69 JB: 167 NN: 98 JB: 138 NN: 67 JB: 117 NN: 64 JB: 102 NN: 53 JB: 83 NN: 50	tion of ×10 ³ EL: 83 DA: 103 EL: 82 DA: 96 EL: 130 DA: 100 CL: 84 DA: 77 EL: 91 DA: 73 EL: 79 DA: 69	2.3 2. Resolution Resolution Resolutio Resolution Resolution Resolution Resolution Resolution Reso	$\begin{array}{c} 4 & 2.5 \\ L \\ true \\ tition of \\ GeV^2, \times 10 \\ EL: 35 \\ DA: 62 \\ EL: 43 \\ DA: 64 \\ EL: 53 \\ DA: 77 \\ EL: 46 \\ DA: 63 \\ EL: 41 \\ DA: 53 \\ EL: 36 \\ DA: 45 \\ EL: 38 \\ \end{array}$
Bin 1 2 3 4 5 6 7	2.1 2.2 Events 301780 350530 138456 74844 31043 11475 3454	2.3 2.4 Resolution of the solution of the solu	L: 10 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.2.2 (1) 2.2.	2.3 2. Resolution Resolution Resolutio Resolution Resolution Resolution Resolution Resolution Reso	$\begin{array}{c} 4 & 2.5 \\ L_{true} \\ \\ \text{ution of} \\ \text{GeV}^2, \times 10 \\ \text{EL: 35} \\ \text{DA: 62} \\ \text{EL: 43} \\ \text{DA: 64} \\ \text{EL: 43} \\ \text{DA: 64} \\ \text{EL: 43} \\ \text{DA: 64} \\ \text{EL: 46} \\ \text{DA: 53} \\ \text{EL: 41} \\ \text{DA: 53} \\ \text{EL: 36} \\ \text{DA: 45} \\ \text{EL: 38} \\ \text{DA: 42} \end{array}$
Bin 1 2 3 4 5 6 7 8	2.1 2.2 Events 301780 350530 138456 74844 31043 11475 3454 624	2.3 2.4 Resolution of the solution of the solu	L: 10 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.8.2 (1) 2.3.2 (1) 2.2.2 (1) 2.2.	2.3 2. Resolution Resolution Resolutio Resolution Resolution Resolution Resolution Resolution Reso	4 2.5 Ltrue attion of GeV ² , ×10 EL: 35 DA: 62 EL: 43 DA: 64 EL: 53 DA: 64 EL: 53 DA: 64 EL: 41 DA: 53 EL: 41 DA: 53 EL: 36 DA: 45 EL: 38 DA: 45 EL: 37

Table 4: Resolution of the reconstructed kinematic variables in bins of x and Q^2 . The resolution for x and Q^2 is defined as the RMS of the distributions $\log(x) - \log(x_{true})$ and $\log(Q^2) - \log(Q^2_{true})$ respectively.

First application of DL for regression of DIS kinematics:

M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

Can we do regression with UQ?

(13)

Ground Truth (Nature)

Ideal case

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al.,

"Reconstructing the kinematics of deep inelastic scattering with deep learning", NIM-A 1025 (2022): 166164

<u>Input Features</u>

Define variables to characterize the strength of QED radiation

$$p_T^{\text{bal}} = 1 - rac{p_{T,e}}{T} = 1 - rac{\sum_e an rac{\gamma}{2}}{\sum an rac{ heta}{2}} \quad ext{ and } \quad p_z^{ ext{bal}} = 1 - rac{\sum_e + \Sigma}{2 E_0} \,.$$

7 features to help indicate QED radiation in the event

- The values of p_T^{bal} and p_z^{bal} .
- The energy, η , and $\Delta \phi$ of the reconstructed photon in the event that is closest to the electron-beam direction, where $\Delta \phi$ is with respect to the scattered electron.
- The sum ECAL energy within a cone of $\Delta R < 0.4$ around the scattered electron divided by the scattered-electron track momentum.
- The number of ECAL clusters within a cone of $\Delta R < 0.4$ around the scattered electron.

Tot. 15 input features

+ additional 8 features

- Scattered-electron quantities $p_{T,e}$, $p_{z,e}$ and E.
- HFS four-vector quantities T, $p_{z,h}$ and E_h .
- + $\Delta\phi(e,h)$ between the scattered electron and the HFS momentum vector.
- The difference $\Sigma_e \Sigma$.

Dataset	Training Events	Validation Events	Testing Events	Size on Disk
H1	8.7×10^6	$1.9 imes 10^6$	1.9×10^6	8 GB

(used H1 MC sim dataset of NIM-A 1025: 166164*)

ELUQuant: Event-level UQ

CF, J. Giroux 2024 Mach. Learn.: Sci. Technol. 5 015017

Event-Level Uncertainty Quantification

https://github.com/wmdataphys/ELUQuant

 $\mathcal{L}_{Tot.} = \mathcal{L}_{Reg.} + \gamma \mathcal{L}_{Phys.} + \beta \mathcal{L}_{NF.}$

Learn the Posterior over the weights

$$MNF_{MNF_{t}} = \mathbb{E}_{q(\mathbf{W}, \mathbf{z}_{T})} \left[-KL(q(\mathbf{W}|\mathbf{z}_{T_{f}}) \| p(\mathbf{W})) + \log r(\mathbf{z}_{T_{f}}|\mathbf{W}) - \log q(\mathbf{z}_{T_{f}}) \right]$$

Access epistemic uncertainty through sampling MNF [1] layers

Learn the regression transformation

$$\mathcal{L}_{Reg.} = \frac{1}{N} \sum_{i} \sum_{j} \frac{1}{2} (e^{-\mathbf{s}_j} \| \mathbf{v}_j - \hat{\mathbf{v}}_j \|^2 + \mathbf{s}_j), \ \mathbf{s}_j = \log \sigma_j^2$$

Access aleatoric as a function of regressed output [2]

Constrain the physics

$$\mathcal{L}_{Phys.} = \frac{1}{N} \sum_{i} \log \hat{Q}_i^2 - (\log s_i + \log \hat{x}_i + \log \hat{y}_i)$$

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks [2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).

<u>Aleatoric (ELUQ) vs RMS (other)</u>

POETIC XI, 2025

16)

<u>ELUQ vs DNN</u>

POETIC XI, 2025

- The RMS (MNF) roughly coincide with that of DNN as seen previously
- The RMS (DNN) for x and y is larger at low y given the distributions are broader
- The epistemic is systematically smaller than aleatoric component.
- At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN

<u>All Methods Compared</u>

POETIC XI. 2025

18)

- At low y, the RMS are typically larger due to "broader" distributions
- DNN and MNF have smaller RMS over the whole y range compared to other methods (this was also the finding of NIM-A 1025 (2022): 166164)
 - "Our method outperforms other methods over a wide kinematics range"
 - "The RMS resolution for y and x increase at lower y, even for the DNN reconstruction. ... This results ... may be attributed to further acceptance, noise, or resolution effects that deteriorates the measurement of the HFS"

Leveraging Event-Level Information (19)

- Removing events with large relative event-level uncertainty (with respect to the network prediction) improve the ratio to truth and reduce inaccuracy
- Notice these cuts do not use any information at the ground truth level
- Bonus: this could be sensitive to anomalies.

— In the plot above events with at least one among x, Q^2 , y with a relative uncertainty larger than a threshold are removed —

Multi-Objective Optimization

Hot take: every optimization problem is fundamentally a multi-objective optimization problem.

POETIC XI, 2025

(20)

<u>AI-assisted Detector Design</u>

Compute-intensive simulation pipelines

 Benefits from rapid turnaround time from simulations to analysis of high-level reconstructed observables

POETIC XI, 2025

(21)

- The EIC SW stack offers multiple features that facilitate AI-assisted design (e.g., modularity of simulation, reconstruction, analysis, easy access to design parameters, automated checks, etc.)
 - Leverages heterogeneous computing

Provide a framework for an holistic optimization of the sub-detector system A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives (e.g., detector response, physics-driven, costs) subject to (iii) constraints

<u>AI-assisted Detector Design @EIC</u>

(i) Advance state of the art MOO complexity to accommodate a large number of objectives and explore usage of physics-inspired approaches

M. Diefenthaler et al (AID2E Collaboration) 2024 JINST 19 C07001

 (ii) Development of suite of data science tools for interactive navigation of Pareto front (multi-dim design with multiple objectives)

Distributed, scalable!

(iii) Leverage cutting-edge workload management systems capable of operating at massive data and handle complex workflows

POETIC XI, 2025

(22)

• Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will make up a majority of the cost of the EIC over its
lifetime

AID2E Applications

E. Cisbani et al 2020 JINST 15 P05009

dual-RICH

• Considering all the constraints as ePIC is in the process of finalizing engineering designs, we can select those sub-detectors that still have tunable parameters

Mirror, sensor placement, gas, mirror material (lower costs material)...

PID performance, costs, ...

Far-Forward

B0 magnetic field map, distance between layers, central location of tracker

POETIC XI, 2025

(23)

• AID2E framework can <u>support the design</u> of a possible detector-2; it is also being used for other compute-intensive tasks, such as <u>alignment</u> and <u>calibration</u>

<u>AI Agents for EIC</u>

K. Suresh, N. Kackar, L Schleck, CF

"Towards a RAG-based summarization for the Electron Ion Collider." JINST 19.07 (2024): C07006.

What is Retrieval Augmented Generation (RAG)?

- Access up to date information without explicitly training of LLM.
- Reduce "Hallucination" of LLM.
- Grounding LLM to truth to increase reliability by providing citations.

Why need RAG for Large Scale Physics Experiments?

- EIC large scale experiment (e.g., EICUG ~1,400 users, ePIC 170+ institutions)
- Regular updates to documents, Run Wiki
- Newbies may take months to get to know the full experimental details.
- Tot document size approximately proportional to scale of experiment

"Ingestion" of data

- Creation of the vectorized knowledge base.
- Every node below influence RAG performance
- 200 recent arXiv papers on EIC (since 2021)

"Inference"

- Given a prompt compute similarity index to most similar vectors in VectorDB
- Use LLM to further narrow down and summarize the finding

<u>AI Agents for EIC</u>

Methods to evaluate RAG's performance

- RAGAS score
- LLM as Judge^[1]

Methods to improve RAG architecture

- Better chunking strategies. LateX Splitter, TWikiSplitter
- Metadata based filtering.
- Response Template fine-tuning. INSTRUCT tuning
- Model fine-tuning. Computationally costly.

Question What is the pixel size and expected momentum resolution at 2GeV from a MAPS ITS3 tracking layer

Response

- The pixel size of the MAPS ITS3 tracking layer is 10 \$\mu\$m <ARXIV_ID>http://aniv.org/abs/2108.08314/1-(ARXIV_ID> <ARXIV_ID>http://aniv.org/abs/2203.07626/v2</ARXIV_ID> <ARXIV_ID>http://aniv.org/abs/2302.0144/1+(ARXIV_ID> <ARXIV_ID>http://aniv.org/abs/2305.15593/1</ARXIV_ID> <ARXIV_ID>http://aniv.org/abs/2305.15593/1</ARXIV_ID>
- The expected momentum resolution at 2 GeV from a MAPS ITS3 tracking layer is 2.5% to 15% of the initial
 momentum <aRXV_ID>http://anix.org/abs/2210.0860/sv2</ARXV_ID>
 </arXV_ID>
 </arXVIID>
 </arXV_ID>
 </arXV_ID>

Faithfulness	Answer relevance	Context relevance		
100%	50%	70%		

Question What are the dimensions of MAPS detector used in EIC?

Response

- The MAPS detector used in the EIC has dimensions ranging from 3.67 cm to 43 cm, with a sensor size of 10x10 cm <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2',
 'http://arxiv.org/abs/2302.01447v1', 'http://arxiv.org/abs/2210.04879v2',
 'http://arxiv.org/abs/2305.02079v2', 'http://arxiv.org/abs/2302.01447v1']
- The ePIC MAPS electron endcap detector has a geometry parameter listed, and the ePIC MAPS hadron endcap detector also has geometry parameters listed <a kives/listed
- The ePIC MAPS vertex detector design can reach as low as 0.05, and the imaging layers of MAPS sensors provide excellent position resolution <ARXIV_ID> [http://arxiv.org/abs/2303.07626v2; 'http://arxiv.org/abs/2305.15593v1']
- The MAPS sensor used in the EIC is based on low-mass, low-power consumption MAPS in 65 nm technology <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2']
- The MAPS sensor used in the EIC is based on low-mass, low-power consumption MAPS in 65 nm technology <ARXIV_ID>[http://arxiv.org/abs/2203.07626v2']

# of Hallucination	Faithfulness Answer relevance		Context relevance	Answer correctness	
3/50	26% 62%		100%	Qualitative	

• Towards Multimodal Agents: A multimodal AI assist in interpreting visual data, cross-referencing documentation, providing actionable insights in real time...

<u>Conclusions</u>

POETIC XI, 2025

- AI/ML Integration: AI/ML will be integrated across all phases of EIC's science.
- Streaming Computing Model: The EIC community is developing a streaming computing model to enable near real-time AI/ML analysis, promising substantial advancements in live data processing.
- Al/ML will be key for data processing and analysis at EIC:
 - E.g., Cherenkov detectors are extremely important at EIC and present unique computational challenges; Newly developed methods enable generalization across continuous phase spaces and direct learning from real data.
 - Transformers: Delivers fast inference, approximately 9 µs/track, facilitating complex event-level topology learning. This is particularly valuable for critical physics channels like SIDIS
 - Normalizing Flows: Delivers high-fidelity, hit-level simulations conditioned on charged track kinematics, effectively overcoming major computational bottlenecks in simulations.
- Uncertainty Quantification at the event-level: Essential for precision experiments at EIC; leveraging advanced simulations including
 radiative corrections, we can use deep learning to improve both kinematic reconstruction and <u>UQ at the event level</u>
- Large-scale experiments leveraging Al-assisted Design and Optimization: Experiments at EIC aim to be among the first to be realized with the assistance of AI (this was already done during the proto-collaboration phase). The AID2E project is realizing a distributed framework that can optimize holistically large-scale detectors. The Detector-2 can be an ideal candidate. AID2E will be an ideal tool to optimize design changes with objectives (e.g., reduce cost). Can be also used for alignment and calibration tasks.
- Towards Multimodal Agents: Imagine you're an EIC owl shift-taker doing some complex task. To resolve it efficiently, you need to retrieve relevant information while analyzing available plots. A multimodal AI agent can assist in interpreting visual data, cross-referencing documentation (logbooks, wiki, etc), and providing actionable insights in near real-time...

Backup

Fast Sim: Closure Tests

Here **trained on fast simulation** 2x size of original dataset (full sim) Tested on full simulations

ELUQuant Time Performance

Training Parameter	value
Max Epochs	100
Batch Size	1024
Decay Steps	50
Decay Factor (γ)	0.1
Physics Loss Scale (α)	1.0
KL Scale (β)	0.01
Training GPU Memory	$\sim 1 \mathrm{GB}$
Network memory on local storage	$\sim 7 \mathrm{MB}$
Trainable parameters	$611,\!247$
Wall Time	$\sim 1 \text{ Day}$
Physics Loss Scale (α)KL Scale (β)Training GPU MemoryNetwork memory on local storageTrainable parametersWall Time	1.0 0.01 $\sim 1 GB$ $\sim 7 MB$ 611,247 $\sim 1 Day$

POETIC XI, 2025

2)

• In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event within a 20 milliseconds on an RTX 3090.

value

10k

100

 $\sim 24 \text{GB}$

 $\sim 20ms$

• Can we do faster than this?

Inference Parameter

Number of Samples (N)

Batch Size

Inference GPU Memory

Inference Time per Event

 Several ways. A quick and dirty approach is distilling this knowledge in a simpler but faster network (we explored a DNN with 450k parameters) called in the following "Fast UQ", obtaining an effective inference time of 7-8us/event using batch ~0.5M events

<u>Simulations Campaign</u>

- Large simulation campaigns needed since proto-collaboration phase (the selected "ECCE detector" concept utilized Al-assistance), where we adopted solutions with containerized software with distribution over the OSG — NIM-A: 1047 (2023):167859 (ECCE Computing model)
- This typically entails a large volume of events which are simulated for any given design of the detector ("design point"); i.e., in principle, 1 design point => 1 simulation campaign
- Therefore, and in general, more simulations needed to explore multiple design points
- Current simulation campaigns produce up to 15-20 TB / month (T. Britton, Oct 2024)
- Towards a quantitative computing model (<u>M. Diefenthaler, Sep 2024</u>)

Reconstruction and Simulation Times	Times based on current software on modern cores			
Reconstruction event processing time with background [s]	2			
Reconstruction algorithmic speedup factor 10yrs out	1.5			
Simulation event processing time with background [s]	15			
Full simu speedup factor 10yrs out	1.5			
Combined time with background, with speedup [s]	11			
Simulation Use Cases				
Number of simulated events per event of interest	10	The canonical 10x more.		
Optimized simu events per physics event	4	~40% of measured events will be signal.		
Fast simulation speedup relative to full simulation	4			
Proportion of simulation events using fast simulation	70%			

500k tracks for the tracker and PID would require O(1.5k) cpu core hours including the entire simulation pipeline

POETIC XI, 2025

<u>Multi-Objective Optimization</u>

MOO is needed to optimize a system of sub-detectors

- 3 Types of Objectives
 - Intrinsic detector performance (resolutions, efficiencies) for each sub-detector Tracking, calorimetry, PID — noisy
 - Physics-performance Multiple physics channels, equally important in the EIC physics program
 - Costs (e.g., material costs, provided a reliable parametrization)
- Objectives can be competing with each other
 - E.g. Better detector response come with higher costs; better resolutions may imply lower efficiencies; etc.

MOBO		n: number of design points				
Gaussian Process O(n³)	Bay fro NUT	M: objectives esian Sampling om posteriors $S - O (Md^{5/4})$	C	Acquisition function)2	Complexity Studies
 Surrogate model. SAAS^{II} priors have been proven to be successful up to 388 design dimensions Assumes several design variables has increased importance compared to others Computational expensive as iteration increases Benefit from GPU hardware acceleration 	 Sample L distributio HMC is a is a variar Mainly de objective dimensio Has mini iteration. GPU acc backend 	points from the posterior on popular algorithm, NUTS nt epends on the number of s and design space ns mal dependence on eleration through JAX	•	Captures HV improvement A "cheaper" function to evaluat proxy for the black box function Scales nonlinearly with iteration points explored, design space a objective space. Partially benefitted by GPU acceleration.	te as a n n, total and	1200 1000
Benefitting fro	om GPU acce	eration	timo or	esociated to the		$\begin{array}{c} \underline{a} \\ \underline{b} \\ \underline{c} \\ $

 With sufficient parallelization, if possible, the time associated to the MOBO part at some point becomes dominant (bottom plot shown at 15th iteration with number of points between ~70-160)

q: batch size

Interactively Navigate Pareto

C.Fanelli et al, NIM A, 2023, 167748

Phi res

KF InEff

The whole idea of the AI-assisted design is that of determining trade-off optimal solutions in a multidimensional design space driven by multiple objectives

POETIC XI, 2025

For an interactive visualization: https://ai4eicdetopt.pythonanywhere.com

