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Disclaimer (1)
POETIC XI, 2025

● This is not an ePIC talk, though I will frequently reference ePIC.

● I will not cover all ongoing AI/ML efforts in the EIC, particularly in ePIC, where most AI/ML activities 
are still in early stages.

● Some examples are drawn from other experiments or inspired by AI4EIC discussions (https://eic.ai) 
and Allaire, C., et al., Computing and Software for Big Science 8.1 (2024): 5). 

● The talk primarily explores experimental / data analysis perspectives, showcasing immediately 
available ML-based approaches that could be widely adopted for the EIC science.

● I will not specifically delve into AI/ML for streaming readout, as it warrants a separate talk. However, I 
will highlight relevant connections and implicitly address aspects of near real-time analysis.

https://eic.ai
https://link.springer.com/article/10.1007/s41781-024-00113-4


AI/ML is Ubiquitous (2)
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Autonomous vehicles

Security
Home automation

Assistance

Entertainment Health 

AI-Powered POS 



Experimental Opportunities for EIC (3)

● The EIC is being realized during the AI revolution (and the genAI wave), and will be operating in the next decade. 
The EIC science aims to integrate AI/ML across all phases of the experiment, from design to operations.
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From https://www.bnl.gov/eic/epic.php

● AI/ML is ubiquitous in HEP and is increasingly shaping NP too. 

A. Boehnlein, M. Diefenthaler, CF et al., Machine learning in nuclear physics, 
Rev. Mod. Phys. 94, 031003 (2022) and references therein

Allaire, C., et al. "Artificial Intelligence for the Electron Ion Collider (AI4EIC)." 
Computing and Software for Big Science 8.1 (2024): 5.

https://www.bnl.gov/eic/epic.php


Experimental Opportunities (4)

1. Fast, High-Fidelity Simulations – Emphasis on accurate and efficiently accelerated detector response modeling

2. Enhanced PID: Near real-time reconstruction of complex patterns across full kinematic ranges

3. (Bonus) Data-Driven Learning from Real Data – Directly leveraging high-purity real data (when available) 

4. Event-Level – Holistic learning from (all) available event-level information

5. Uncertainty Quantification – Understanding and managing uncertainties in ML-based analysis

6. Event-Level Uncertainty Quantification – Combining (1) and (2) for more robust event-level insights

7. Distributed Multi-Objective Optimization for Detector Systems – Leveraging distributed MOO for detector design, 
alignment, and calibration while learning tradeoff solutions in a constrained multi-parameter space

8. Agentic Scientific Workflows – Multimodal AI assistance with specialized agents for tasks such as experimental 
shift-taking, data analysis, and EIC science interpretation 
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AI/ML for Cherenkov Detectors (5)
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● Cherenkov detectors constitute the backbone of PID 
(DIRC, dRICH, pfRICH) 

● They represent a major simulation bottleneck in that 
optical photons involve multiple photons that need to 
be tracked through complex surfaces (S. Joosten’s talk 
at AI4EIC) → need for fast simulations 

● All Cherenkov detectors rely on pattern recognition of 
ring images in the reconstruction, which may become 
particularly complex like in the case of the DIRC → 
need to enhance reconstruction Available at 

https://www.bnl.gov/eic/epic.php

Desiderata: 

● Reconstruction at the “event-level” rather than “track-level” (e.g., two tracks with overlapping patterns in the 
same optical box) — N.b. over 10% of SIDIS events involve at least two charged tracks with momenta above 
1 GeV/c detected simultaneously in one sector of the hpDIRC  

● Possibility of learning directly from real data the detector response. 

● Faster algorithms to cope with near real-time analysis   

https://indico.bnl.gov/event/10699/contributions/53786/attachments/36985/60918/20210907-AI4EIC-Simulation-Bottlenecks.pdf
https://www.bnl.gov/eic/epic.php


Cherenkov Detectors: DIRC example (6)
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 (x,y,t) hit pattern

Photon Yield vs Track Angle 

(P∈[0,5] GeV/c)

Fixed Kinematics

𝐊 +- / 𝜋 +-

Goal: Characterize hit patterns from 𝐊 +- / 𝜋 +- as a function of < |𝙥| , 𝜃 , 𝜙 > (track)

48 fused silica bars segmented into 4 bar boxes

Two optical boxes, containing distilled water and highly reflective focusing mirrors

6 x 18 PMT (8 x 8 pixels) array for photon detection. Provides location and timing information for photons

Patterns (collecting multiple particles) 
vs kinematics  

Photon yield per particle
(each particle produces a sparse hit 

pattern)



Deep(er)RICH: Fast Sim with NF (7)
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Architecture: Normalizing Flow (NF) 

● Density Transformation – Define a bijective function and apply a change of 
variables, conditioning on kinematics parameters to maximize likelihood of 
expected hit pattern under a base distribution

● Hit-Level Learning – Model conditioned on kinematic parameters (∣p∣,θ,ϕ)

● Agnostic to Photon Yield – Ensure model independence from photon yield

● Abstract away Fixed Input Size – Address NF limitations with discrete 
distributions; data preprocessing transform DIRC readout (row, col) to (x,y) in 
mm and uniformly smear over PMT pixels

Simulation is fast - O(0.5)μs per hit (effective)

CF, J. Giroux, J. Stevens. “Deep(er)RICH" 
Machine Learning: Science and Technology 6.1 (2025): 015028.

high fidelity

Deep(er)RICH

Geant4

Deep(er)RICH

Geant4 Geant4

Deep(er)RICH

(hpDIRC standalone sim)



Deep(er)RICH: PID (8)
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● Individual tracks do form “images” in optical 
boxes

○ Sparse point representations

● Possibility of overlapping hits
○ Same x,y - different times
○ Construct these as images as FIFO 
○ Tends to be low percentage of overlap

● Hierarchical Vision Transformer (Swin) - encoder style 
feature extraction

○ Windowed attention - higher throughput
● Combine information through CNN - utilize skip 

connections for different resolutions
● Inject kinematics as concatenated information to DNN

CF, J. Giroux, J. Stevens. “Deep(er)RICH" 
Machine Learning: Science and Technology 6.1 (2025): 015028.



Deep(er)RICH: PID (9)
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PID is fast - O(9)μs per track with transformer (effective)

Bonus: NF for PID. This method is slightly slower given additional 
computation needed

CF, J. Giroux, J. Stevens. “Deep(er)RICH" 
Machine Learning: Science and Technology 6.1 (2025): 015028.

enhancement

(GlueX DIRC sim)



Event-level Reco: DIS example (10)
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DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x. 

Born diagram

higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation

These kinematic variables are related via Q2 = s・x y, where s is the square of the center-of-mass energy.

DIS 
Kinematics 

The expected collision rate for ep DIS 18X275GeV is 83 kHz. More info can be found at this link.

https://wiki.bnl.gov/EPIC/index.php?title=Deep_Inelastic_Scattering


(11)
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DIS Kinematics:Traditional Methods 

● Conservation of momentum and energy 
over constrain the DIS kinematics and leads 
to a freedom to calculate x, Q2, y from 
measured quantities 

● Each method has advantages and 
disadvantages, and no single approach is 
optimal over the entire phase space. Each 
method exhibits different sensitivity to QED 
radiative effects  

● Once (real) higher-order QED effects are 
considered, various methods yield different 
results and the calculated quantities for Q2, 
y and x are not representative for the γ/Z + 
p scattering process at the hadronic vertex.

Summary of basic reconstruction methods

Table taken from Arratia et al., NIM-A 1025 (2022): 166164



Deeply Learning DIS (12)
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DIS fundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable x, Q2, y in the study of 
neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

First application of DL for regression of DIS kinematics: 

M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.



Can we do regression with UQ? (13)
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Ground Truth (Nature)

Ideal case



Input Features (14)
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(used H1 MC sim dataset of NIM-A 1025: 166164*)

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., 
“Reconstructing the kinematics of deep inelastic scattering with deep learning", NIM-A 1025 (2022): 166164

● Define variables to characterize the strength of QED radiation

+ additional 8 features7 features to help indicate QED radiation in the event

Tot. 15 input features 



ELUQuant: Event-level UQ (15)
POETIC XI, 2025

Learn the Posterior over the weights

Access epistemic uncertainty through sampling MNF [1] layers

Access aleatoric as a function of regressed output [2]

Learn the regression transformation

Constrain the physics

https://github.com/wmdataphys/ELUQuant

Event-Level Uncertainty Quantification

CF, J. Giroux 2024 Mach. Learn.: Sci. Technol. 5 015017

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).

https://github.com/wmdataphys/ELUQuant


Aleatoric (ELUQ) vs RMS (other) (16)
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ELUQ vs DNN (17)
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● The RMS (MNF) roughly coincide with that of DNN as seen previously 

● The RMS (DNN) for x and y is larger at low y given the distributions are broader  

● The epistemic is systematically smaller than aleatoric component. 

● At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN



All Methods Compared (18)
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● At low y, the RMS are typically larger due to “broader” distributions  

● DNN and MNF have smaller RMS over the whole y range compared to other methods (this was also the finding of 
NIM-A 1025 (2022): 166164)

○ “Our method outperforms other methods over a wide kinematics range”

○ “The RMS resolution for y and x increase at lower y, even for the DNN reconstruction. … This results … may 
be attributed to further acceptance, noise, or resolution effects that deteriorates the measurement of the HFS” 

— Reporting uncertainty at the level of the event for ELUQuant; RMS from other methods and also for ELUQuant for comparison with DNN 
— 



Leveraging Event-Level Information (19)
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● Removing events with large 
relative event-level uncertainty 
(with respect to the network 
prediction) improve the ratio to 
truth and reduce inaccuracy 

● Notice these cuts do not use 
any information at the ground 
truth level

● Bonus: this could be sensitive 
to anomalies. 

Represented the average uncertainty 
at the event-level in this plot 

—  In the plot above events with at least one among x,Q2, y
 with a relative uncertainty larger than a threshold are removed — 



Multi-Objective Optimization (20)
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Hot take: every optimization problem is fundamentally a multi-objective optimization problem.

Minimizing Talk DurationMaximizing Clarity
vs

detector design 
solutions

hypervolume
For illustrative purposes



AI-assisted Detector Design (21)
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Provide a framework for an holistic optimization of the sub-detector system  
A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives 

(e.g., detector response, physics-driven, costs) subject to (iii) constraints

● Benefits from rapid turnaround time from 
simulations to analysis of high-level 
reconstructed observables

● The EIC SW stack offers multiple features 
that facilitate AI-assisted design (e.g., 
modularity of simulation, reconstruction, 
analysis, easy access to design 
parameters, automated checks, etc.) 

● Leverages heterogeneous computing

Accurate simulations of the passage of particles or 
radiation through matter

Compute-intensive simulation pipelines



AI-assisted Detector Design @EIC (22)
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(i) Advance state of the art MOO 
complexity to accommodate a large 

number of objectives and explore usage of 
physics-inspired approaches

(ii) Development of suite of data science tools 
for interactive navigation of Pareto front 

(multi-dim design with multiple objectives)

(iii) Leverage cutting-edge workload 
management systems capable of 
operating at massive data and handle 
complex workflows

https://ai4eicdetopt.pythonanywhere.com/

[Link to complexity 
studies]

 M. Diefenthaler et al (AID2E Collaboration) 2024 JINST 19 C07001

● Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits
● A fractional improvement in the objectives translates to a more efficient use of beam time which will make up a majority of the cost of the EIC over its 

lifetime
 

Distributed, scalable!

https://ai4eicdetopt.pythonanywhere.com/
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495


AID2E Applications (23)
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● Considering all the constraints as ePIC is in the process of finalizing engineering designs, we can select 
those sub-detectors that still have tunable parameters 

dual-RICH
● Mirror, sensor 

placement, gas, 
mirror material (lower 
costs material)...  

● PID performance, 
costs, …

Far-Forward ● B0 magnetic field map, distance between 
layers, central location of tracker  

● Momentum resolution, acceptance

 E. Cisbani et al 2020 JINST 15 P05009

● AID2E framework can support the design of a possible detector-2; it is also being used for other 
compute-intensive tasks, such as alignment and calibration



AI Agents for EIC (24)
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What is Retrieval Augmented Generation (RAG)?
● Access up to date information without explicitly training of LLM.
● Reduce “Hallucination” of LLM. 
● Grounding LLM to truth to increase reliability by providing citations.

External 
Knowledge

Why need RAG for Large Scale Physics Experiments?
● EIC large scale experiment (e.g., EICUG ~1,400 users, ePIC 170+ institutions) 
● Regular updates to documents, Run Wiki
● Newbies may take months to get to know the full experimental details.
● Tot document size approximately proportional to scale of experiment
“Ingestion” of data 
● Creation of the vectorized knowledge base.
● Every node below influence RAG performance
● 200 recent arXiv papers on EIC (since 2021)

“Inference”
● Given a prompt compute similarity index to most similar 

vectors in VectorDB
● Use LLM to further narrow down and summarize the finding

https://rags4eic-ai4eic.streamlit.app/RAG-ChatBot

K. Suresh, N. Kackar, L Schleck, CF  
"Towards a RAG-based summarization for the Electron Ion Collider." JINST 19.07 (2024): C07006.

https://www.eicug.org/content/map.html
https://rags4eic-ai4eic.streamlit.app/RAG-ChatBot


AI Agents for EIC (25)
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Methods to evaluate RAG’s performance
● RAGAS score
● LLM as Judge[1]

Methods to improve RAG architecture
● Better chunking strategies. LateX Splitter, TWikiSplitter
● Metadata based filtering.
● Response Template fine-tuning. INSTRUCT tuning
● Model fine-tuning. Computationally costly.

● Towards Multimodal Agents: A multimodal AI assist in interpreting visual data, cross-referencing documentation, providing actionable 
insights in real time… 

https://docs.ragas.io/en/latest/concepts/metrics/index.html
https://arxiv.org/pdf/2311.09476.pdf


Conclusions (26)
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● AI/ML Integration: AI/ML will be integrated across all phases of EIC's science.   

● Streaming Computing Model: The EIC community is developing a streaming computing model to enable near real-time AI/ML analysis, 
promising substantial advancements in live data processing. 

● AI/ML will be key for data processing and analysis at EIC:

○ E.g., Cherenkov detectors are extremely important at EIC and present unique computational challenges; Newly developed 
methods enable generalization across continuous phase spaces and direct learning from real data. 

■ Transformers: Delivers fast inference, approximately 9 µs/track, facilitating complex event-level topology learning. This is 
particularly valuable for critical physics channels like SIDIS 

■ Normalizing Flows: Delivers high-fidelity, hit-level simulations conditioned on charged track kinematics, effectively 
overcoming major computational bottlenecks in simulations.

● Uncertainty Quantification at the event-level: Essential for precision experiments at EIC; leveraging advanced simulations including 
radiative corrections, we can use deep learning to improve both kinematic reconstruction and UQ at the event level  

● Large-scale experiments leveraging AI-assisted Design and Optimization: Experiments at EIC aim to be among the first to be realized 
with the assistance of AI (this was already done during the proto-collaboration phase). The AID2E project is realizing a distributed 
framework that can optimize holistically large-scale detectors. The Detector-2 can be an ideal candidate. AID2E will be an ideal tool to 
optimize design changes with objectives (e.g., reduce cost). Can be also used for alignment and calibration tasks.

● Towards Multimodal Agents: Imagine you're an EIC owl shift-taker doing some complex task. To resolve it efficiently, you need to retrieve 
relevant information while analyzing available plots. A multimodal AI agent can assist in interpreting visual data, cross-referencing 
documentation (logbooks, wiki, etc), and providing actionable insights in near real-time…  



Backup



Fast Sim: Closure Tests (1)
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Here trained on fast simulation 
2x size of original dataset (full sim)

Tested on full 
simulations



ELUQuant Time Performance (2)
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● In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event 
within a 20 milliseconds on an RTX 3090.

● Can we do faster than this?

○ Several ways. A quick and dirty 
approach is distilling this knowledge 
in a simpler but faster network (we 
explored a DNN with 450k 
parameters) called in the following 
“Fast UQ”, obtaining an effective 
inference time of 7-8us/event using 
batch ~0.5M events



Simulations Campaign (1)
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● Large simulation campaigns needed since proto-collaboration phase (the selected “ECCE detector” concept utilized 
AI-assistance), where we adopted solutions with containerized software with distribution over the OSG — NIM-A: 
1047 (2023):167859 (ECCE Computing model) 

● This typically entails a large volume of events which are simulated for any given design of the detector (“design 
point”); i.e., in principle, 1 design point => 1 simulation campaign

● Therefore, and in general, more simulations needed to explore multiple design points

● Current simulation campaigns produce up to 15-20 TB / month (T. Britton, Oct 2024)

500k tracks for the tracker and 
PID would require O(1.5k) cpu 
core hours including the entire 
simulation pipeline

● Towards a quantitative computing model (M. Diefenthaler, Sep 2024) 

https://indico.cern.ch/event/1343110/contributions/6114345/attachments/2937914/5160727/7thRucio_wkshop_Britton_Oct24.pdf
https://indico.bnl.gov/event/25036/contributions/97371/attachments/57652/98994/ePIC-SC-Review-Diefenthaler-StreamingComputingModel.pdf


Multi-Objective Optimization (1)
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● 3 Types of Objectives 

○ Intrinsic detector performance (resolutions, 
efficiencies) for each sub-detector — 
Tracking, calorimetry, PID — noisy

○ Physics-performance — Multiple physics 
channels, equally important in the EIC physics 
program 

○ Costs (e.g., material costs, provided a 
reliable parametrization)

● Objectives can be competing with each other 

○ E.g. Better detector response come with 
higher costs; better resolutions may imply 
lower efficiencies; etc.

detector design solutions

hypervolume

MOO is needed to optimize a system of sub-detectors

For illustrative purposes



MOBO (1)
POETIC XI, 2025

n: number of design points
d: design dimensionality (each point)
M: objectives

Complexity Studies

● Benefitting from GPU acceleration

● With sufficient parallelization, if possible, the time associated to the 
MOBO part at some point becomes dominant (bottom plot shown at 15th 
iteration with number of points between ~70-160 )

q: batch size



Interactively Navigate Pareto (1)
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The whole idea of the AI-assisted design is 
that of determining trade-off optimal 
solutions in a multidimensional design 
space driven by multiple objectives
 

For an interactive visualization:
https://ai4eicdetopt.pythonanywhere.com

C.Fanelli et al, NIM A, 2023, 167748

https://ai4eicdetopt.pythonanywhere.com/

