Impact of DIS data at large x with the CJ global analysis

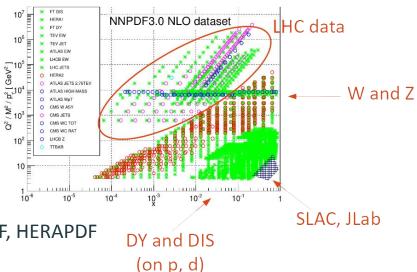
Shujie Li

with many thanks to

A. Alberto, M. Cerutti, C. Cocuzza, I. Fernando, X. Jing, J. Owens, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan, N. Sato

POETIC XI Workshop @ FIU

Feb 27, 2025

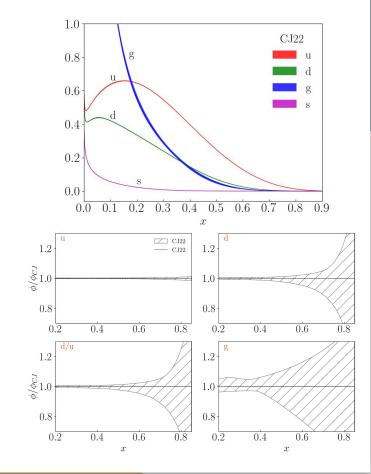


Global QCD fits

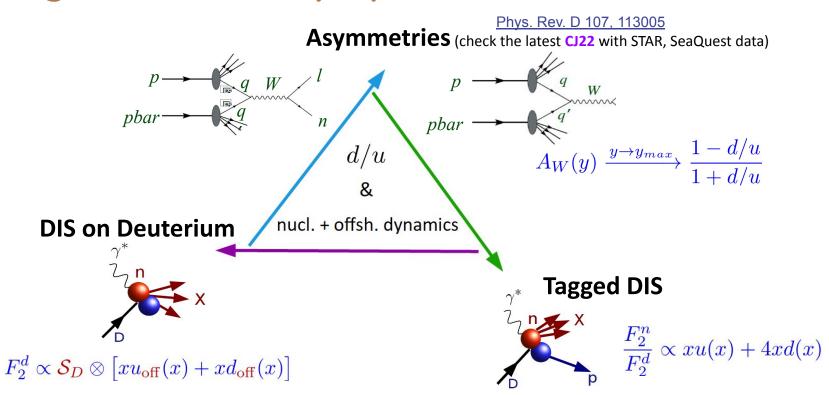
 $d\sigma_{ ext{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{ ext{parton}}^{f_1 f_2 o ij} \otimes \phi_{f_2}$

PDFs (from DIS fits)

- pQCD factorization & universality: can fit PDFs to a variety of hard scattering data
 - Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
 - Electron-proton DIS
 - Electron-Deuteron DIS
- >1000 data points
- 40+ years of experience,
 - "High-energy" fitters:
 - → CTEQ-TEA, MMHT, NNPDF, HERAPDF
 - Lower-energy / nuclear focus:
 - → CTEQ-JLab (CJ), AKP, ABMP, JAM



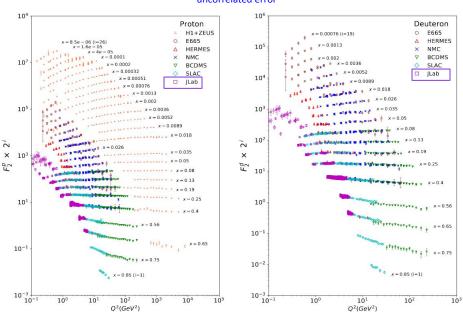
CJ Overview


- Coordinated theory-experiment effort :
 - Alberto Accardi, Matteo Cerutti, Xiaoxian Jing, Ishara Fernando,
 Wally Melnitchouk, Jeff Owens, Peter Risse
 - Thia Keppel, Shujie Li, Peter Monaghan, Sanghwa Park
- Specializes in PDF fitting at JLab kinematics (low Q², large x)
- Latest: CJ22 A. Accardi, X. Jing, J. F. Owens, and S. Park PhysRevD.107.113005
 - 25 fitting parameters (=20 PDF + 2 off-shell + 3 higher-twist)
 - 4k+ p and d data points

Obs.	Experiment	Ref.	# Points	χ^2
DIS	JLab (p)	[31]	136	161.0
	JLab (d)	[31]	136	119.1
4	JLab (n/d)	[32]	191	213.2
	HERMES (p)	[33]	37	29.1
	HERMES (d)	[33]	37	29.5
Structure	SLAC (p)	[34]	564	469.8
unctions	SLAC (d)	[34]	582	412.1
unctions	BCDMS (p)	[35]	351	472.2
	BCDNS (d)	[36]	254	321.8
	NMC (p)	[37]	275	416.5
	NMC (d/p)	[38]	189	199.6
	HERA (NC e^-p)	[39]	159	249.7
	HERA (NC e^+p 1)	[39]	402	598.9
	HERA (NC e^+p 2)	[39]	75	98.8
	HERA (NC e^+p 3)	[39]	259	250.0
	HERA (NC e^+p 4)	[39]	209	229.1
	HERA (CC e^-p)	[39]	42	45.6
	HERA (CC e^+p)	[39]	39	52.5

Obs.	Experiment	Ref.	# Points	χ^2
LPP	E866 (pp)	[4]	121	144.1
	E866 (pd)	[4]	129	157.4
	SeaQuest (d/p)	[5]	6	7.5
W	CDF(e)	[40]	11	12.6
	D0 (e)	[41]	13	28.8
	$D0(\mu)$	[42]	10	17.5
	CDF(W)	[43]	13	18.0
	D0(W)	[44]	14	14.5
	STAR (e^+/e^-)	[6]	9	25.3
	$(less \eta_{max} point)$		(8)	(15.4)
Z	CDF	[45]	28	29.2
	D0	[46]	28	16.1
jet	CDF	[47]	72	14.0
	D0	[48, 49]	110	14.0
γ +jet	D0 1	[50]	16	8.7
	D0 2	[50]	16	19.3
	D0 3	[50]	12	25.0
	D0 4	[50]	12	12.2
	total		4557	4936.6
	total + norm		4573	4948.6

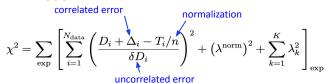
Large-x PDFs: interplay of observables

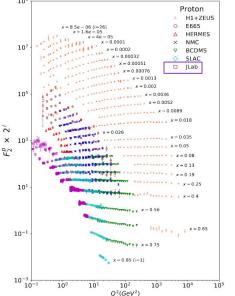


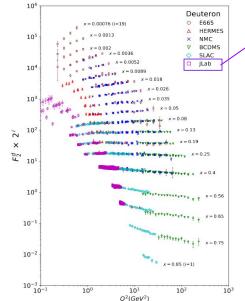
DIS data from JLab

- **CJ DIS cuts:** $Q^2 > 1.691 \text{ GeV}^2/c^2$, $W^2 > 3.5 \text{ GeV}^2$
- Fit minimization:

$$\chi^2 = \sum_{\text{exp}} \left[\sum_{i=1}^{N_{\text{data}}} \left(\frac{D_i + \Delta_i - T_i/n}{\delta D_i} \right)^2 + \left(\lambda^{\text{norm}} \right)^2 + \sum_{k=1}^K \lambda_k^2 \right]_{\text{exp}}$$






DIS data from JLab

• CJ DIS cuts: $Q^2 > 1.691 \text{ GeV}^2/c^2$, $W^2 > 3.5 \text{ GeV}^2$

• Fit minimization:

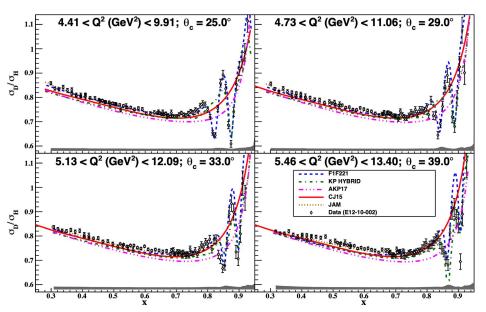
JLab 6GeV	# of F2p points	# of F2d points
E-00-116	136	136
E-03-103	37	69
CLAS6	609	1723
E-94-110	112	0
E-06-009	0	79
E-99-118	2	2
JLCee96	100	97
BONuS6	115 (n/d)	

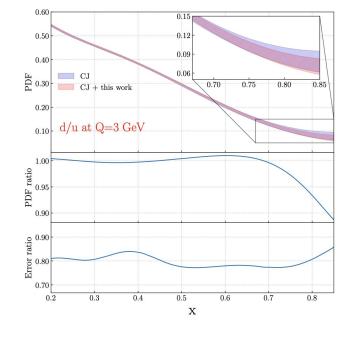
More from 12 GeV: E12-00-002: d/p BONuS12: n/d CLAS12: p and d MARATHON: 3H/3He

. . .

Coming soon: CJ+JAM

- Merged DIS database and LHAPDF grids (big thanks to Christopher Cocuzza): github/CJ-JAM-database/
- unpolarized PDF benchmark
- JLab data impact study
- Impact of correlated errors

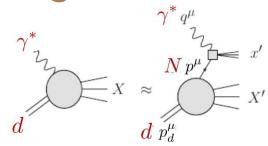

For JAM updates, see Wally's talk on Wednesday


Impact of Large-x Deuteron Data

"Power of precision"

JLab E12-10-002 d/p data

Impact on d/u



arXiv:2409.15236 (submitted to PRL)

Deuteron: Fermi motion and binding

- Weak binding approximation:
 - Incoherent scattering from not too fast individual nucleons
 - O Neglects FSI Melnitchouk, Schreiber, Thomas, PRD 49 (1994) Kulagin, Piller, Weise, PRC 50 (1994) Kulagin and Petti, NPA 765 (2006)

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \, \mathcal{K}(z,p^2,\gamma) \, \big| \psi_{N/d}(|\vec{p}\,|) \big|^2 F_{2N}(x/z,Q^2,p^2)$$
 kinematic and

"flux" factors

Nucleon wave function

structure function of bound, off-shell nucleon

$$\longrightarrow$$
 $z = \frac{p \cdot q}{p_d \cdot q} \approx 1 + \frac{p_0 + \gamma p_z}{M} \quad \left[p_0 = M + \varepsilon, \ \varepsilon = \varepsilon_d - \frac{\vec{p}^2}{2M} \right]$

momentum fraction of d carried by N

$$\longrightarrow$$
 at finite Q^2 , $\gamma = \sqrt{1 + 4x^2p^2/Q^2}$

quantifies how far the nucleon is from the light cone ($\gamma = 1$)

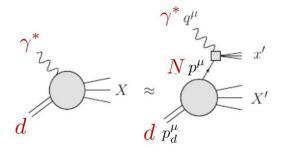
Off-shell corrections in Deuteron

- Nucleons are bound in the deuteron:
 - $p^2 < M^2$
 - Structure functions are deformed (but not too much if x not too large)
- Offshell expansion:
 - parametrize first order coefficient
 - Structure function level

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\rm free}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x)\right]^{\rm Kulagin,\ Melnitchouk,\ et\ al.,\ PRC\ 52\ (1995)}_{\rm Kulagin\ and\ Petti,\ NPA\ 765\ (2006)}^{\rm Kulagin\ and\ Petti,\ NPA\ 765\ (2006)}$$

Free proton, neutron structure function

"offshell function"


Off-shell corrections in Deuteron

- Nucleons are bound in the deuteron:
 - $p^2 < M^2$
 - Structure functions are deformed (but not too much if x not too large)
- Offshell expansion:
 - parametrize first order coefficient
 - Structure function level

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\rm free}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]^{\rm Kulagin,\ Melnitchouk,\ et\ al.,\ PRC\ 52\ (1995)}_{\rm Kulagin\ and\ Petti,\ NPA\ 765\ (2006)}$$

Free proton, neutron structure function

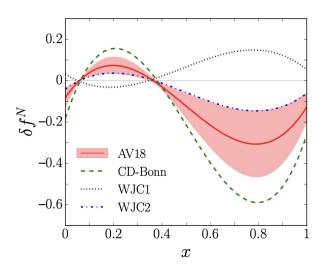
Parton level (CJ's choice)

"offshell function"

Interchangeable only at LO

$$\phi(x, Q^2, p^2) = \phi^{\text{free}}(x, Q^2) \left(1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right)$$

Off-shell corrections in Deuteron


- Offshell expansion:
 - o parametrize first order coefficient
 - → Parton level (CJ's choice)

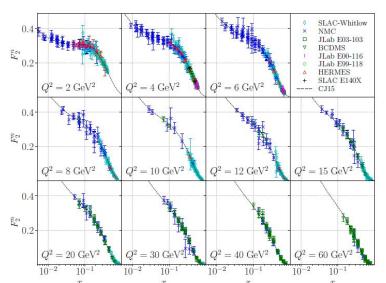
$$\phi(x, Q^2, p^2) = \phi^{\text{free}}(x, Q^2) \left(1 + \frac{p^2 - M^2}{M^2} \delta f(x)\right)$$

$$\delta f(x) = \left. \frac{\partial \ln \phi(x, Q^2, p^2)}{\partial \ln p^2} \right|_{p^2 = M^2}$$

Assume Q² evolution canceled

$$\delta f(x) = C(x - x_0)(x - x_1)(1 + x_0 - x)$$

When fitted, this effectively becomes a phenomenological "catch-all" term (see later)


"Free" neutron

SL, Accardi, Cerruti, Fernando, et. al PhysRevD.109.074036

$$(p+n)_{data} = d_{data} * (p+n)_{cj} / d_{cj}$$

$$\downarrow cross-normalization$$

$$n_{data} = (p+n)^*_{data} - p^*_{data} = d^*_{data} * (p+n)_{cj} / d_{cj} - p^*_{data}$$

Applications:

- Isoscalar corrections for A/d
- Non-singlet moments from p-n:

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3 + 9r + 8r^2}{20} \right] F_2^{p-n}(x, Q^2)$$

$$0.12 - CJ15$$

$$0.10 \frac{1}{\xi^2} 0.08$$

$$0.04 - CJ15$$

$$0.10 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.06 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 \frac{1}{\xi^2} rebinned data$$

$$0.04 - CJ15$$

$$0.06 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.06 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.08 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

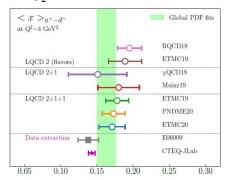
$$0.06 \frac{1}{\xi^2} rebinned data$$

$$0.02 - CJ15$$

$$0.04 - CJ15$$

$$0.06 - CJ15$$

$$0.06 - CJ15$$

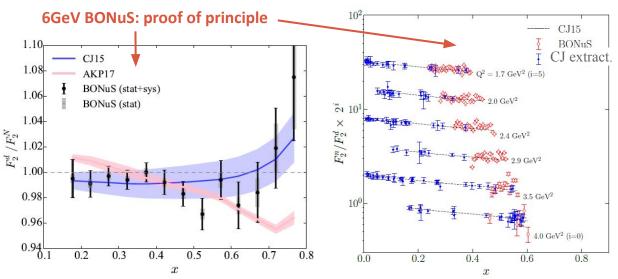

$$0.07 - CJ15$$

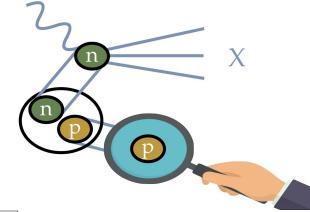
$$0.08 - CJ15$$

$$0.08 - CJ15$$

$$0.09 - CJ15$$

$$\frac{3}{C_2}M_2^{p-n} = \langle x \rangle_{u^+-d^+} + \text{ HT}$$




2nd order moments significantly lower than recent LQCD calculations (Rodekamp et. al, PhysRevD.109.074508), how about higher orders?

"Free" neutron

- Probe the barely off-shell neutron in deuteron by tagging a low-momentum recoil proton
 - Nuclear modification v.s. virtuality
 - Insensitive to isospin-dependence

$$\phi(x, Q^2, p^2) = \phi^{\text{free}}(x, Q^2) \left(1 + \frac{p^2 - M^2}{M^2} \delta f(x)\right)$$

Coming soon: BONuS12

Deuteron tagging at **EIC**:

- Recoil proton boosted for easier detection
- See also <u>Dien's talk</u> on Tuesday

Cerutti et. al, arXiv:2501.06849 (submitted to PRD)

Offshell:

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\rm free}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x)\right]$$
 Free proton, neutron structure function "offshell function"

Higher-twist:

Multiplicative (CJ's choice)

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2} \right)$$
$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 + a_{ht}^{(2)} x)$$

Additive

$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

$$H(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 - x)^{a_{ht}^{(2)}} (1 + a_{ht}^{(3)} x)$$

Cerutti et. al, arXiv:2501.06849 (submitted to PRD)

Offshell:

$$F_{2N}(x, Q^2, p^2) = F_{2N}^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

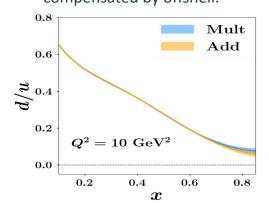
Free proton, neutron structure function

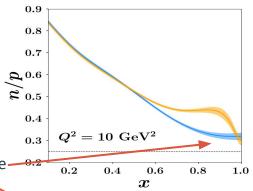
"offshell function"

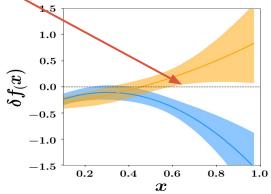
Higher-twist:

• Multiplicative (CJ's choice)

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2} \right)$$
$$C(x) = \frac{a_{ht}^{(0)}}{a_{ht}^{(1)}} x^{a_{ht}^{(1)}} (1 + \frac{a_{ht}^{(2)}}{a_{ht}^{(2)}} x)$$


Additive


$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$


$$H(x) = \frac{a_{ht}^{(0)}}{a_{ht}^{(1)}} x^{a_{ht}^{(1)}} (1 - x)^{a_{ht}^{(2)}} (1 + \frac{a_{ht}^{(3)}}{a_{ht}^{(3)}} x)$$

Assume **p=n** for HT and offshell:

The difference from HT choices are compensated by offshell.

Offshell:

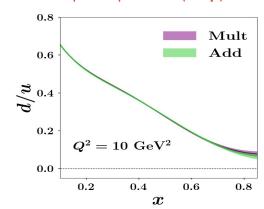
$$F_{2N}(x, Q^2, p^2) = F_{2N}^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

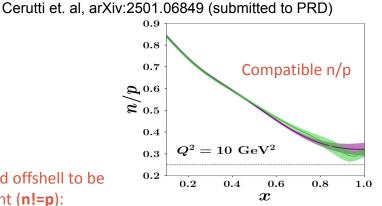
Free proton, neutron structure function

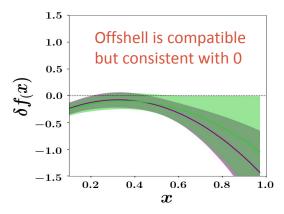
"offshell function"

Higher-twist:

• Multiplicative (CJ's choice)


$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2} \right)$$
$$C(x) = \frac{a_{ht}^{(0)}}{a_{ht}^{(1)}} x^{a_{ht}^{(1)}} (1 + \frac{a_{ht}^{(2)}}{a_{ht}^{(2)}} x)$$


Additive


$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

$$H(x) = \frac{a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 - x)^{a_{ht}^{(2)}} (1 + \frac{a_{ht}^{(3)}}{2} x)}{2}$$

Now allow HT and offshell to be isospin-dependent (n!=p):

Offshell:

 $F_{2N}(x, Q^2, p^2) = F_{2N}^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$

Free proton, neutron structure function

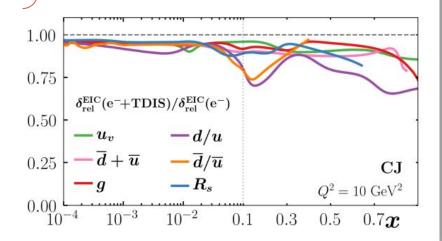
No Q² dependence

Higher-twist:

1/Q²

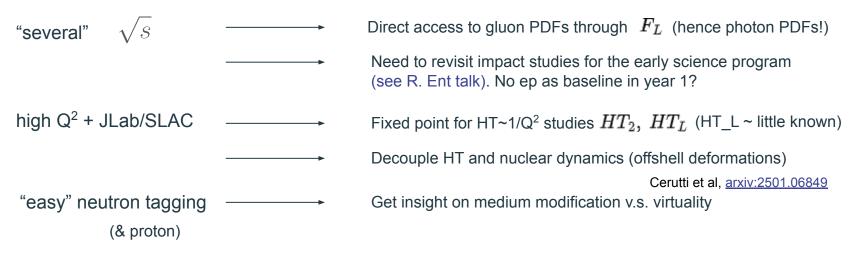
Multiplicative (CJ's choice)

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2} \right)$$
$$C(x) = \frac{a_{ht}^{(0)}}{a_{ht}^{(1)}} x^{a_{ht}^{(1)}} (1 + \frac{a_{ht}^{(2)}}{a_{ht}^{(2)}} x)$$


Additive

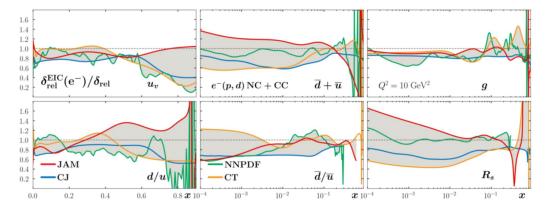
$$F_2 = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$

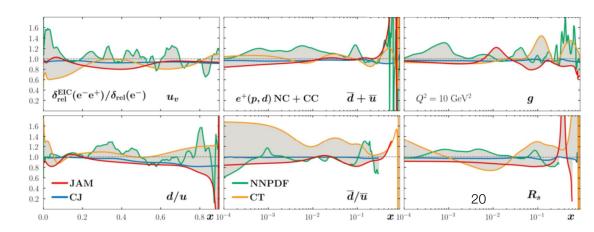
$$H(x) = \frac{a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 - x)^{a_{ht}^{(2)}} (1 + a_{ht}^{(3)} x)}{(1 + a_{ht}^{(3)} x)^{a_{ht}^{(2)}}}$$


EIC:

- clean determination of offshell effects at high Q²
- Pin down offshell effects with tagging

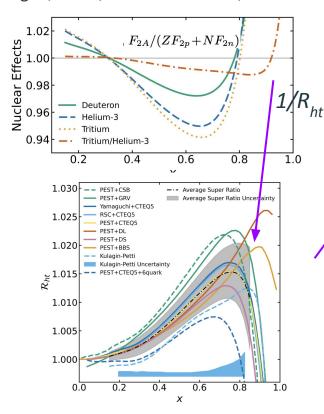
More thoughts on large-x PDFs at EIC


CJ+JAM discussion


Positron beam for additional d/u determination at large x?

Backups

Impact study from yellow report


Figure 7.4: Comparison of relative uncertainties for unpolarized PDFs xf(x) for different partons, before and after the inclusion of EIC data, evaluated at $Q^2 = 10 \text{ GeV}^2$. We include the analysis of different collaborations, limited to e^- datasets.

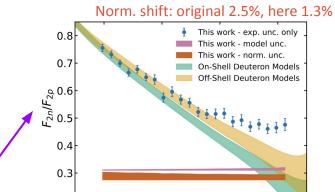


Figure 7.5: PDF relative uncertainties after inclusion of NC and CC $e^+(p, d)$ data normalized to the electron-data-only case.

F2 n/p from MARATHON data impact study

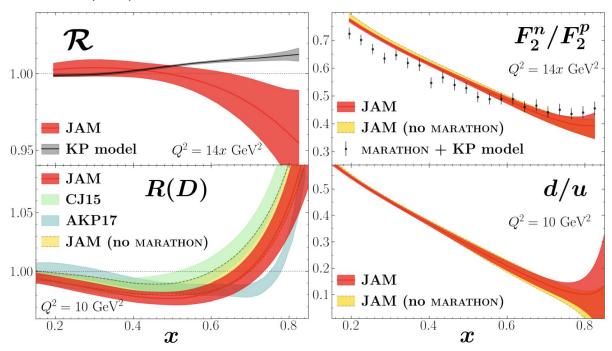
T. Hague, et. al., arxiv 2312.13499, NOT a CJ work

Varying R_{ht} didn't change the n/p shape at high x noticeably:

0.4

0.6

х

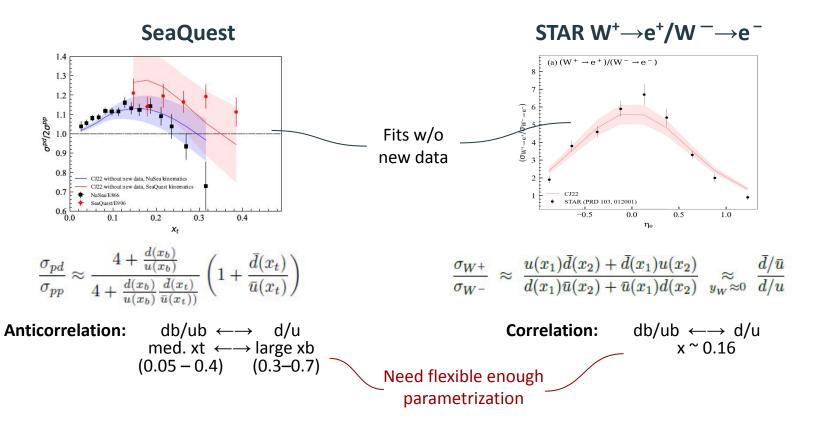

0.8

0.2

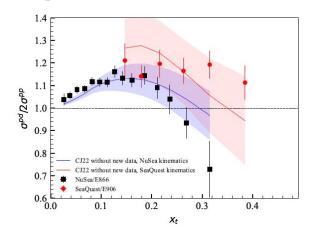
- ⇒ n/p is different in deuteron and A=3 nuclei?
- ⇒ More likely: larger than expected isospin dependence in nuclear effects

Iso-vector nuclear effect?

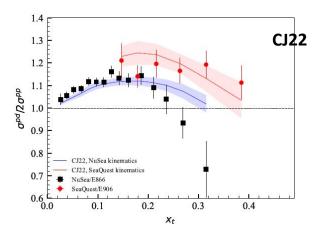
C. Cocuzza et. al. (JAM), arxiv: 2104.06946



New: electroweak data

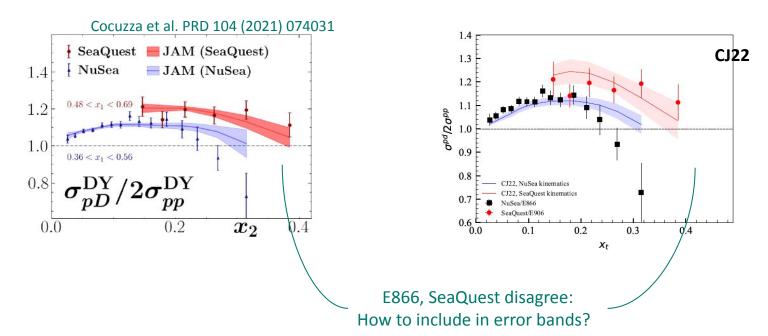

Obs.	Experiment	Ref.	# Points	χ^2
DIS	JLab (p)	[31]	136	161.0
	JLab (d)	[31]	136	119.1
	JLab (n/d)	[32]	191	213.2
	HERMES (p)	[33]	37	29.1
	HERMES (d)	[33]	37	29.5
	SLAC (p)	[34]	564	469.8
	SLAC (d)	[34]	582	412.1
	BCDMS (p)	[35]	351	472.2
	BCDNS (d)	[36]	254	321.8
	NMC (p)	[37]	275	416.5
	NMC (d/p)	[38]	189	199.6
	HERA (NC e^-p)	[39]	159	249.7
	HERA (NC e^+p 1)	[39]	402	598.9
	HERA (NC e^+p 2)	[39]	75	98.8
	HERA (NC e^+p 3)	[39]	259	250.0
	HERA (NC e^+p 4)	[39]	209	229.1
	HERA (CC e^-p)	[39]	42	45.6
	HERA (CC e^+p)	[39]	39	52.5

Obs.	Experiment	Ref.	# Points	χ^2	
LPP	E866 (pp)	[4]	121	144.1	
	E866 (pd)	[4]	129	157.4	
	SeaQuest (d/p)	[5]	6	7.5	
W	CDF(e)	[40]	11	12.6	
	D0(e)	[41]	13	28.8	
	$D0(\mu)$	[42]	10	17.5	
	CDF(W)	[43]	13	18.0	
	D0(W)	[44]	14	14.5	
	STAR (e^+/e^-)	[6]	9	25.3	
	(less $\eta_{\rm max}$ point)	10.00 (10.00)	(8)	(15.4)	
\mathbf{Z}	CDF	[45]	28	29.2	
	D0	[46]	28	16.1	
jet	CDF	[47]	72	14.0	
	D0	[48, 49]	110	14.0	
γ +jet	D0 1	[50]	16	8.7	
	D0 2	[50]	16	19.3	
	D0 3	[50]	12	25.0	
	D0 4	[50]	12	12.2	
	total		4557	4936.6	
	total + norm		4573	4948.6	

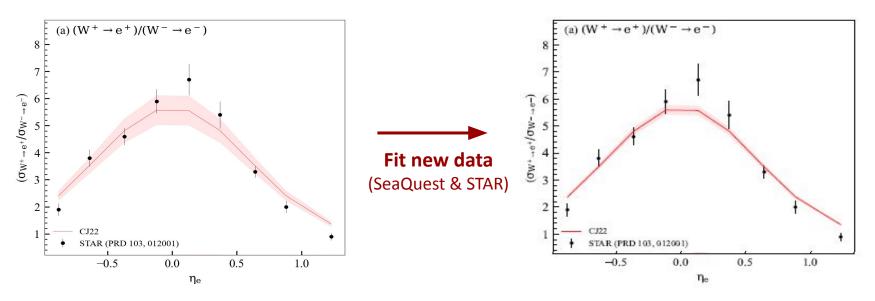

New: electroweak data

Lepton Pair Production

SeaQuest: χ^2 /datum = 3.19

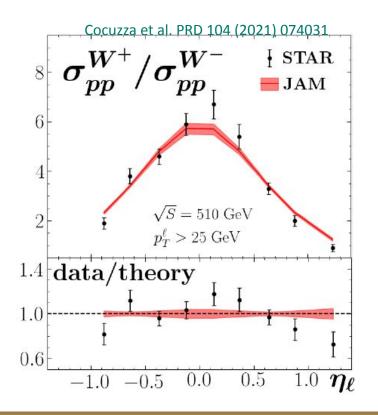

E866 : χ^2 /datum = 1.63

1.25

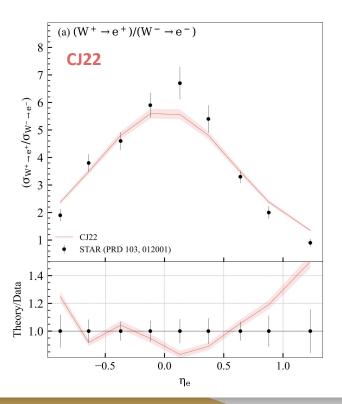

1.93

Lepton Pair Production

• Comparable results to JAM, CT:

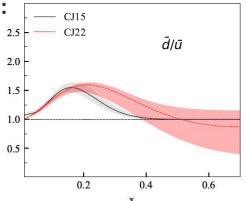


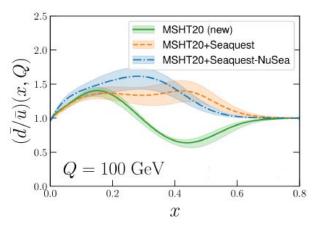
Weak boson production

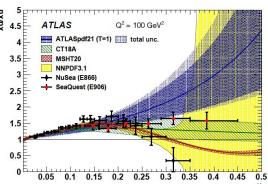


- Large reduction in uncertainty driven by SeaQuest data
- STAR contributes ~ 15% reduction around x~0.16
 - o distributed between d/u (5%) and db/ub (10%) PDF ratios

Weak boson production

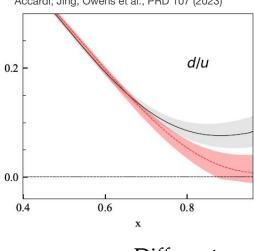


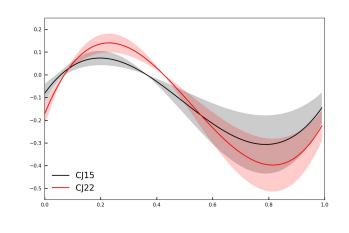

Only W+/W- ratio was fitted


Comparison to other recent PDFs

SeaQuest fitted:

• PDFs w/o SeaQuest:


Latest results from QCD fits in CJ framework


CJ22 fit

Same off-shell parameterization

More flexible parameterization of sea quarks (NuSea and SeaQuest data)

Accardi, Jing, Owens et al., PRD 107 (2023)

Different

Similar

Difference on is absorbed in something else

Higher Twist

Is the model for off-shell correction enough flexible?

Impact of HT on n/p ratio

Are experimental observables independent of the choice of the HT?

$$\xrightarrow{x o 1} \qquad \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

(extrapolation region)

Case 1: isospin-symmetric HT

$$Mult HT$$

$$C_p(x) = C_n(x) = C(x)$$

$$\frac{(4d+u)(1+C/Q^2)}{(4u+d)(1+C/Q^2)} \simeq \frac{1}{4}$$

No effect of HT

Add HT
$$H_p(x) = H_n(x) = H(x)$$

$$\frac{4d + u + H/Q^2}{4u + d + H/Q^2} \simeq \frac{1}{4} + 27 \frac{H}{16uQ^2}$$

Strong effect of HT

Bias identified!!

Results in the CJ fitting framework

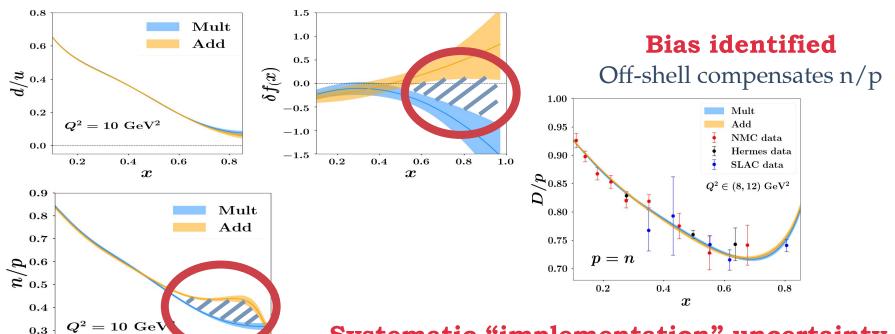
Case 1: isospin-symmetric HT

Results in the CJ fitting framework

Case 1: isospin-symmetric HT

0.2

0.2


0.4

0.6

 \boldsymbol{x}

0.8

1.0

Systematic "implementation" uncertainty in a region of extrapolation

Impact of HT on n/p ratio

Are experimental observables independent of the choice of the HT?

$$\xrightarrow{x \to 1} \qquad \frac{1}{4}$$

LT

Mult HT

$$C_p(x) = C_n(x) = C(x)$$

Case 2: isospin-breaking HT

$$\begin{array}{c}
Add HT \\
H_p(x) \neq H_n(x)
\end{array}$$

$$\frac{u + H_n/Q^2}{4u + H_p/Q^2}$$

$$\simeq \frac{1}{4} + 9 \frac{4H_n - H_p}{16uQ^2}$$

$$H_{p}(x) = H_{n}(x)$$

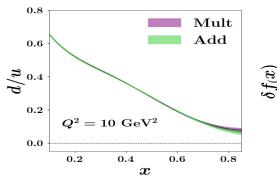
$$H_{p}(x) = 2H_{n}(x)$$

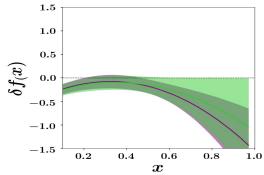
$$rac{1}{4} + 27 rac{H}{16uQ^2}$$

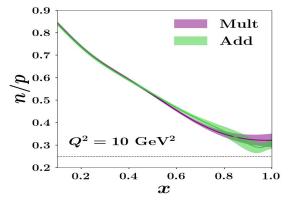
$$\frac{1}{4} + 9 \frac{H}{16uQ^2}$$

n/p ratio is smaller

$$C_p(x) \neq C_n(x)$$

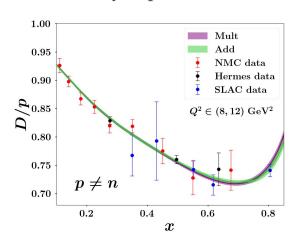

$$\frac{u + \tilde{H}_n/Q^2}{4u + \tilde{H}_p/Q^2}$$


same as Add


Bias removed!

Results in the CJ fitting framework

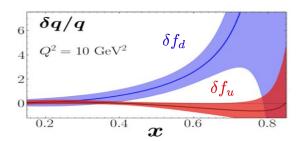
Case 2: isospin-breaking HT



Compatible n/p

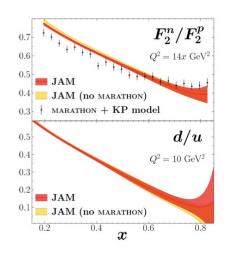
Bias removed

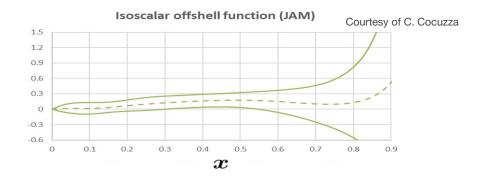
No need of compensation by off-shell Theory expectations confirmed!



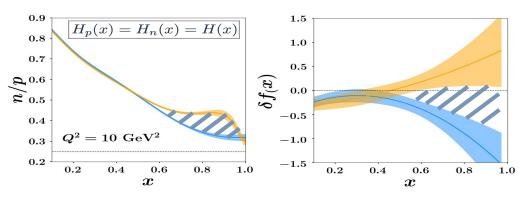
JAM results

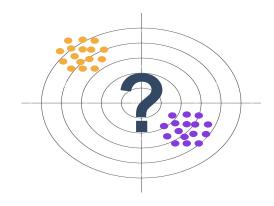
JAM Fit including A=3 data

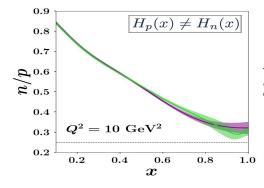

JAM Collaboration, PRL 127 (2021)

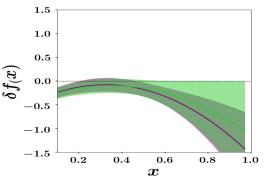

Mult HT (p=n) as default choice

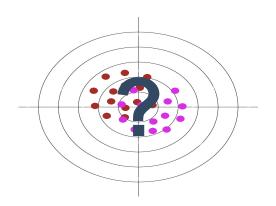
$$\delta f(x)|_{\text{CJ-like}} = \frac{u\delta f_u + d\delta f_d}{u+d}$$

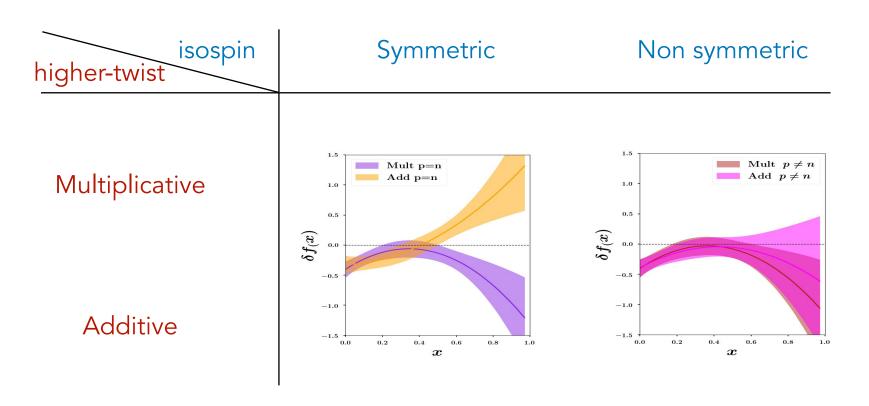

Compatible with CJ results

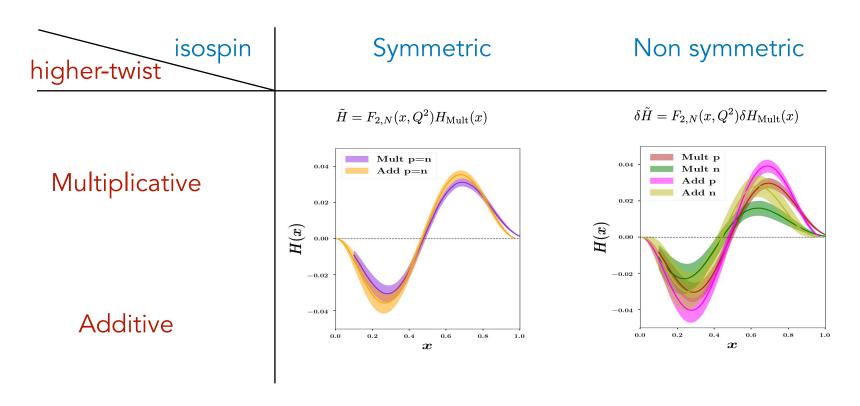



TAKE-HOME message


Case 1: isospin-symmetric HT




Case 2: isospin-breaking HT



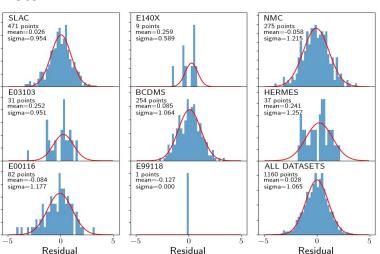
Off-shell table

Higher-Twist table

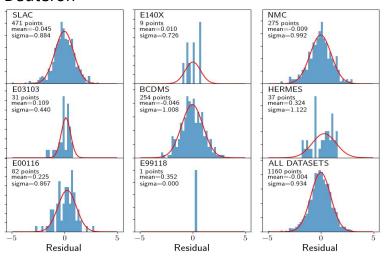
Some implementation differences

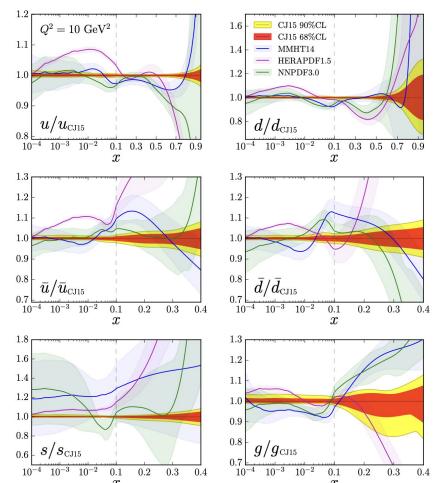
Corrections (increasing-x)

	KP	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
TMC	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
нт	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		


Data - Fit Residual After Cross-normalization

Methods: <u>10.1103/RevModPhys.92.045003</u>


Correlated uncertainty


$$r_k(a_{
m fit},\lambda_{
m fit}) = rac{D_k - T_k(a_{
m fit})}{\sigma_k} - \sum_I eta_{kI} \lambda_I^{
m fit}$$
 uncorrelated

Proton

Deuteron

