Selected

Recent advances in extracting x-dependent GPDs from lattice QCD

Martha Constantinou

Temple University

Physics Opportunities at an Electron-Ion Collider XI

POETIC 2025

February 27, 2025

OUTLINE

A. Methods to access GPDs from lattice QCD

- **B.** Selected results for the proton:
 - twist-2 GPDs
 - twist-3 GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **C.** Synergy with phenomenology
- **D.** Concluding remarks

(Selected) Twist-3 $(f_i^{(1)})$ Nucleon $\gamma^j \qquad \gamma^j \gamma^5 \qquad \sigma^{jk}$ U G_1, G_2 G_3, G_4 G_1 L $\widetilde{G}_1, \widetilde{G}_2$ $\widetilde{G}_3, \widetilde{G}_4$ $H_2'(x, \xi, t)$ $\widetilde{G}_2(x, \xi, t)$

OUTLINE

Theoretical/Technical slide warning

Twist-2 $(f_i^{(0)})$			
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	Τ (σ ^{+j})
U	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
L		$\widetilde{H}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity	
т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$

- - **B.** Selected results for the proton:
 - twist-2 GPDs

- twist-3 GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Methods to access GPDs from lattice QCD

- C. Synergy with phenomenology
- D. Concluding remarks

Α.

Generalized Parton Distributions

★ GPDs may be accessed via exclusive reactions (DVCS, DVMP) **★** exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

[X.-D. Ji, PRD 55, 7114 (1997)]

[J. Qiu et al, arXiv:2205.07846]

- GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: *#* =

$$\int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Theoretical issues discussed by A. Freese

Generalized Parton Distributions

★ GPDs may be accessed via exclusive reactions (DVCS, DVMP) **★** exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

[X.-D. Ji, PRD 55, 7114 (1997)]

[J. Qiu et al, arXiv:2205.07846]

- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: *#* =

$$\int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Theoretical issues discussed by A. Freese

- Essential to complement the knowledge on GPD from lattice QCD
- **★** Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Accessing information on PDFs/GPDs

★PDFs parameterized via matrix elmnts of nonlocal light-cone operators

$$f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} \mathcal{W} \psi_{f} | P, S \rangle$$

Accessing information on PDFs/GPDs

★ PDFs parameterized via matrix elmnts of nonlocal light-cone operators $f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f \gamma^+ W \psi_f | P, S \rangle$

Reconstruction of PDFs/GPDs very challenging

Accessing information on PDFs/GPDs

★PDFs parameterized via matrix elmnts of nonlocal light-cone operators $f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f} \gamma^{+} W \psi_{f} | P, S \rangle$

$$\frac{1}{2} \text{ Mellin moments}_{(\text{local OPE expansion})} \bar{q}(-\frac{1}{2}z) \gamma^{\sigma} W[-\frac{1}{2}z, \frac{1}{2}z] q(\frac{1}{2}z) = \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overleftrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}} q \right]$$

$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \dots z_{\alpha_{n}} \left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \dots \overrightarrow{D}^{\alpha_{n}} q \right]$$

Reconstruction of PDFs/GPDs very challenging

★ Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs, …)

$$\langle N(P_f) | \overline{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

Nonlocal operator with Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht}$$

Reviews of methods and applications

- A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results K. Cichy & M. Constantinou (invited review) Advances in HEP 2019, 3036904, arXiv:1811.07248
- Large Momentum Effective Theory X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543
- The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD
 M. Constantinou (invited review) Eur. Phys. J. A 57 (2021) 2, 77, arXiv:2010.02445

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

 $\mathscr{M}(P_f, P_i, z) = \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0) | N(P_i) \rangle_{\mu}$

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

quasi-PDFs

$$\mathcal{M}(P_f, P_i, z) = \langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z, 0) \Psi(0) \, | \, N(P_i) \rangle_{\mu}$$

pseudo-ITD

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \mathcal{M}(P_f,P_i,z)$$

$$\mathfrak{M}(\nu,\xi,t;z_3^2) \equiv \frac{\mathscr{M}(\nu,\xi,t;z_3^2)}{\mathscr{M}(0,0,0;z^2)} \qquad (\nu = z \cdot p)$$

[A. Radyushkin, PRD 96, 034025 (2017)]

Calculation very taxing!
- length of the Wilson line
$$(z)$$

- nucleon momentum boost (P_3) PDFs, GPDs
- momentum transfer (t)
- skewness (ξ) GPDs

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

$$[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]$$

$$quasi-PDFs$$

$$pseudo-ITD [A. Radyushkin, PRD 96, 034025 (2017)]$$

$$\bar{q}_{\Gamma}^{GPD}(x, t, \xi, P_{3}, \mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \mathcal{M}(P_{f}, P_{i}, z)$$

$$\mathfrak{M}(v, \xi, t; z_{3}^{2}) \equiv \frac{\mathcal{M}(v, \xi, t; z_{3}^{2})}{\mathcal{M}(0, 0, 0; z^{2})} \quad (v = z \cdot p)$$

$$Matching in momentum space (Large Momentum Effective Theory)$$

$$Light-cone PDFs \& GPDs$$

$$Calculation very taxing! - length of the Wilson line (z) - nucleon momentum boost (P_{3}) } PDFs, GPDs$$

$$- momentum transfer (\ell) - skewness (\xi)$$

Matrix elements of non-local operators (space-like separated fields) with **boosted hadrons**

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{\mathbb{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{\mathbb{Q}(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

Off-forward matrix elements of non-local light-cone operators $F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathscr{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle$ $|_{z^+=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$

with scalar

Parametrization in two leading twist GPDs ×

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[i\int_{\Omega} \frac{\partial u(p',\lambda')}{\partial u(p,\lambda)} + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_1=\vec{0}_1}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\left[\int \left[\int \left[v \right] \right] \right] + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left[\int \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \right]$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \rightarrow \begin{array}{c} \text{finite mixing with scalar} \\ \text{[Constantinou \& Panagopoulos (2017)]} \end{array}$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \right] u(p,\lambda) \rightarrow \begin{array}{c} \text{reduction of power} \\ \text{corrections in fwd limit} \\ \text{[Radyushkin, PLB 767, 314, 2017]} \end{array}$$

$$\gamma^{0} \text{ ideal for PDFs} \qquad \gamma^{0} \text{ parametrization is prohibitively expensive}$$

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Goals

- **★** Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Goals

- **★** Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Light-cone GPDs using lattice correlators in non-symmetric frames

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Goals

- Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Light-cone GPDs using lattice correlators in non-symmetric frames

 \rightarrow Proof-of-concept calculation ($\xi = 0$):

- asymmetric frame:

 $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}, \quad \vec{p}_i^s = \vec{P} - \frac{\vec{Q}}{2} \quad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$ - symmetric frame: $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} - \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f - E_i)^2 = 0.65 \, GeV^2$

t Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Goals

- Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Light-cone GPDs using lattice correlators in non-symmetric frames

2.0

- symmetric frame:

- asymmetric frame:

[S. Bhattacharya et al., PRD 106 (2022) 11, 114512]

★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Goals

- **\star** Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Light-cone GPDs using lattice correlators in non-symmetric frames

[S. Bhattacharya et al., PRD 106 (2022) 11, 114512]

Results: unpolarized, helicity

Results: Transversity GPDs

Alternative approach: pseudo-ITD

[Battacharya et al., PRD 110 (2024) 5, 054502]

Different steps between approaches:

- renormalization
- x-dependence reconstruction
- matching formalism

Alternative approach: pseudo-ITD

T

[Battacharya et al., PRD 110 (2024) 5, 054502]

Different steps between approaches:

- renormalization
- x-dependence reconstruction
- matching formalism

Comparison between methods helps assess systematic effects

[S. Bhattacharya et al., PRD 108 (2023) 1, 014507; arXiv:2410.03539]

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

- **Avoid power-divergent mixing of multi-derivative operators**
- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

[S. Bhattacharya et al., PRD 108 (2023) 1, 014507; arXiv:2410.03539]

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

- \star Avoid power-divergent mixing of multi-derivative operators
- ★ Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

[S. Bhattacharya et al., PRD 108 (2023) 1, 014507; arXiv:2410.03539]

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

- **Avoid power-divergent mixing of multi-derivative operators**
- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

[S. Bhattacharya et al., PRD 108 (2023) 1, 014507; arXiv:2410.03539]

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

- **Avoid power-divergent mixing of multi-derivative operators**
- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

[S. Bhattacharya et al., PRD 108 (2023) 1, 014507; arXiv:2410.03539]

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

- **Avoid power-divergent mixing of multi-derivative operators**
- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

Beyond leading twist

Extraction twist-3 very challenging both experimentally and theoretically

Theoretical setup

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Forward limit for twist-3: only
$$\widetilde{H} + \widetilde{G}_2 \equiv g_T$$
 survives
[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

T

Twist-3 very important and have physical interpretation:

- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_2)

Theoretical setup

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Forward limit for twist-3: only $\widetilde{H} + \widetilde{G}_2 \equiv g_T$ survives [S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection)]

'זנ'

Twist-3 very important and have physical interpretation:

- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_2)

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\tilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + A^{\mu}_{\perp}\frac{\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) \right]$$

$$= \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z \Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + A^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$= \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z \Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + A^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[S. Bhattacharya et al., 109 (2024) 3, 034508]

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\tilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[S. Bhattacharya et al., 109 (2024) 3, 034508]

 Parametrization of -t dependence (preliminary)

$$GPD(x, -t, 0) = Ax^{\alpha_0 - \alpha_1 t} (1 - x)^{\beta}$$

Ademollo & Del Giudice Gatto & Preparata

★ Direct access to \widetilde{E} -GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

\star Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

★ Direct access to \widetilde{E} -GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

★ Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t) \ \int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0 \,, \quad i = 1,2,3,4$$

Impact parameter space

M. Constantinou, POETIC 2025

Synergy/Complementarity of lattice and phenomenology

Synergies: constraints & predictive power of lattice QCD

Toward synergy for GPDs

★ Forming ratios of GPDs seems to suppress systematic uncertainties

(a) As a function of ν for $|t| = 0.65 \text{ GeV}^2$.

8

- VGG (dashed curve)
- Good agreement for up quark
- Reasonable agreement for down quark
- Further study
 needed on how to
 combine lattice
 results with data

Tomographic Images

T

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Other GPD global analysis efforts:

- Gepard [https://gepard.phy.hr/]
- PARTONS [https://partons.cea.fr]
- EXCLAIM [https://exclaimcollab.github.io/web.github.io/#/]

Concluding Remarks

- ★ Impressive progress in the extraction of PDFs from Lattice QCD
- **★** Extensive programs in Gluon PDFs
- New Developments in several promising directions:
 DA, GPDs, TMDs
- ★ Synergy with phenomenology has the potential to enhance the impact of lattice QCD data and complement data sets

Join us at EINN 2025

15th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei

> Main conference: 28 October – 01 November, 2025

Organizers:

M. Constantinou (Chair)

A. Denig (Vice-Chair)

C. Alexandrou

A. Deshpande

B. Pasquini

https://2025.einnconference.org/

Pre-conference: 26 - 27 October, 2025

Frontiers and Careers Workshops – skill development and talks for students

DOE Early Career Award (NP) Grant No. DE-SC0020405 & Grant No. DE-SC0025218

T

QUARK-GLUON TOMOGRAPHY COLLABORATION

Award Number: DE-SC0023646