

Single Diffractive Hard Exclusive Scattering (SDHEP) for Extracting GPDs

- Explore Hadron's Partonic Structure without Breaking it – GPDs!
- **SDHEPs for Extracting GPDs**
- **QCD** Factorization, Angular Modulations, ...
- Why GPD's x-dependence is hard to measure?
- Summary and Outlook

In collaboration with N. Sato, Z. Yu, ... See also talk by Z. Yu later today

Jianwei Qiu Jefferson Lab, Theory Center

Explore Hadron's Partonic Structure without seeing quarks/gluons directly

3D hadron structure:

1

NO quarks and gluons can be seen in isolation!

□ Need new observables with two distinctive scales:

- $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$
- Hard scale: Q1 to localize the probe to see the particle nature of quarks/gluons
- "Soft" scale: Q2 to be more sensitive to the emergent regime of hadron structure ~ 1/fm

Partonic Structure with or without breaking the hadron

2

Partonic Structure with or without breaking the hadron

Definition:

$$\begin{split} F^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}u(p) - E^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right] \\ \widetilde{F}^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}\gamma_{5}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}\gamma_{5}u(p) - \widetilde{E}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{\gamma_{5}\Delta^{+}}{2m}u(p) \right]. \end{split}$$

Combine <u>PDF</u> and <u>Distribution Amplitude (DA)</u>:

Forward limit $\xi = t = 0$: $H^q(x, 0, 0) = q(x)$, $\tilde{H}^q(x, 0, 0) = \Delta q(x)$

D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Hořejši, Fortsch. Phys. 42 (1994) 101

given p and p' !

Proton radii from quark and gluon spatial density distribution, $r_q(x)$ & $r_g(x)$

□ Impact parameter dependent parton density distribution:

$$q(x, b_{\perp}, Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x, \xi = 0, t = -\Delta_{\perp}^2, Q)$$

Quark density in $dx d^2 b_T$

Tomographic image of hadron How fast does How far does glue glue density fall? in slice of x density spread? × 0.2 0.15 0.1 Modeled by 0.05 -1 M. Burkdart, -0.5 0.5 PRD 2000 b_{\perp} (fm)

Proton radii from quark and gluon spatial density distribution, $r_q(x)$ & $r_g(x)$

 $x + \xi / f' x + \xi / f' x - \xi$ p - p'Measurement of p' fixes (t, ξ) x = momentum flowbetween the pair

- Should $r_q(x) > r_g(x)$, or vice versa?
- Could $r_g(x)$ saturates as $x \to 0$
- How do they compare with known radius (EM charge radius, mass radius, ...), & why?
- How the image correlate to hadron spin, ... ?

Jefferson Lab

QCD energy-momentum tensor:

Ji, PRL78, 1997 V. D. Burkert, et al. RMP 95 (2023) 041002

$$T^{\mu\nu} = \sum_{i=q,g} T_i^{\mu\nu} \quad \text{with} \quad T_q^{\mu\nu} = \bar{\psi}_q \, i\gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \, \psi_q - g^{\mu\nu} \bar{\psi}_q \left(i\gamma \cdot \overleftrightarrow{D} - m_q \right) \psi_q \quad \text{and} \quad T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\,\mu\nu} + \frac{1}{4} g^{\mu\nu} \left(F^a_{\rho\eta} \right)^2$$

Gravitational" form factors:

$$\langle p' | T_i^{\mu\nu} | p \rangle = \bar{u}(p') \left[A_i(t) \frac{P^{\mu} P^{\nu}}{m} + J_i(t) \frac{i P^{(\mu} \sigma^{\nu)\Delta}}{2m} + D_i(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m} + m \,\bar{c}_i(t) \, g^{\mu\nu} \right] u(p)$$

Connection to GPD moments:

$$\int_{-1}^{1} dx \, x \, F_i(x,\xi,t) \propto \langle p'|T_i^{++}|p\rangle \quad \propto \quad \bar{u}(p') \begin{bmatrix} (A_i + \xi^2 D_i) \gamma^+ + (B_i - \xi^2 D_i) \frac{i\sigma^{+\Delta}}{2m} \end{bmatrix} u(p)$$
$$\int_{-1}^{1} dx \, x \, H_i(x,\xi,t) \quad \int_{-1}^{1} dx \, x \, E_i(x,\xi,t)$$

□ Angular momentum sum rule:

$$J_i = \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_i(x,\xi,t) + E_i(x,\xi,t) \right]$$

i = q, g

Relation to GFFs Angular Momentum

3D tomography

 $C_i(t) \leftrightarrow D_i(t)/4$

Related to pressure & stress force inside h

Polyakov, schweitzer, Inntt. J. Mod. Phys. A33, 1830025 (2018) Burkert, Elouadrhiri , Girod Nature 557, 396 (2018)

x-dependence of GPDs!

Jefferson Lab

Need to know the x-dependence of GPDs to construct the proper moments!

How to Find Physical Processes to be Sensitive to GPDs?

How to Find Physical Processes to be Sensitive to GPDs?

SDHEP: Two-stage Paradigm plus Power Expansion in $\sqrt{-t/q_T}$

- $+\cdots$
 - ≥ 3 parton connection: further Power suppressed

SDHEP: Two-stage Paradigm plus Power Expansion in $\sqrt{-t/q_T}$

SDHEP: Two-stage Paradigm plus Power Expansion in $\sqrt{-t/q_T}$

Exclusive $2 \rightarrow 3$ Electroproduction

□ Exclusive electroproduction of a real photon: $e(\ell) + h(p) \rightarrow e(\ell') + h(p') + \gamma(q')$

Traditional representation (LO in QED) – Breit frame:

Separation of GPDs: angle distribution between leptonic ($\ell \to \ell'$) and hadronic ($p \to p'$) planes!

Angular Modulations – Separation of Different GPDs & Global Analyses

D Experimental Breit frame is not ideal: $e(\ell) + h(p) \rightarrow e(\ell') + h(p') + \gamma(q_2)$

DVCS'' $e(\ell) \rightarrow e(\ell') + \gamma^*(q)$ $\gamma^*(q) + h(p) \rightarrow h(p') + \gamma(q_2)$

Out-going photon is in the hadronic plane

BH is not a "t"-channel process:

Angular modulation between "leptonic" and "hadronic" planes **do not** necessarily select the definite spin-state of A* - different GPDs!

Propagators of $k_1 \& k_2$ have different ϕ -dependence!

Angular Modulations – Separation of Different GPDs & Global Analyses

D Experimental Breit frame is not ideal: $e(\ell) + h(p) \rightarrow e(\ell') + h(p') + \gamma(q_2)$

15

DVCS'' $e(\ell) \rightarrow e(\ell') + \gamma^*(q)$ $\gamma^*(q) + h(p) \rightarrow h(p') + \gamma(q_2)$

Out-going photon is in the hadronic plane

BH is not a "t"-channel process:

Angular modulation between "leptonic" and "hadronic" planes **do not** necessarily select the definite spin-state of A* - different GPDs!

Propagators of $k_1 \& k_2$ have different ϕ -dependence!

SDHEP frame = A* - lepton frame (*switch the role of lepton and hadron in the Breit frame*):

Simple Numerical Examples for Angular Distribution/Modulation

Simple Numerical Examples for Angular Distribution/Modulation

Classification of SDHEPs – Known processes for extracting GPDs

Electro-production (JLab, EIC, ...)

Photo-production (JLab, EIC, ...)

Meso-production (AMBER, J-PARC, ...)

In the SDHEP frame, all GPDs are defined with the same choice of "+" component – defined by the colliding beam of momentum p_2 – good for Global analyses, ...

Jefferson Lab

Why is the GPD's *x*-dependence so *difficult* to measure?

Why is the GPD's *x*-dependence so *difficult* to measure?

Where can the SDHEP get the *x*-sensitivity?

 \Box *x*-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering:

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$
 \leftarrow ξ
2. θ or $q_T = (\sqrt{\hat{s}}/2) \sin\theta$ \leftrightarrow x
3. ϕ (A^*B) spin states

$$\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_A - \lambda_B)\phi} \cdot \int_{-1}^{1} dx \, F_A(x) \, C_A(x;Q) \qquad (Q = \theta \text{ or } q_T)$$
[suppressing *t* and ξ dependence]

Where can the SDHEP get the *x*-sensitivity?

 \Box *x*-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering:

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$
 \leftarrow ξ
2. θ or $q_T = (\sqrt{\hat{s}}/2) \sin \theta$ \leftarrow x
3. ϕ (A^*B) spin states

 $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathsf{Moment-type sensitivity:} \quad \underline{C(x;Q) = G(x) \cdot T(Q)} \implies F_{G} = \int_{-1}^{1} dx \, G(x) \, F(x,\xi,t) \qquad \mathsf{Independent of } Q$ Scaling for F_{G} Inversion problem: <u>shadow GPD</u> $S_{G} = \int_{-1}^{1} dx \, G(x) \, S(x,\xi) = 0$ [Bertone et al. PRD `21]

• Enhanced sensitivity: $C(x; Q) \neq G(x) \cdot T(Q)$ \longrightarrow $d\sigma/dQ \sim |C(x; Q) \otimes_x F(x, \xi, t)|^2$ Jefferson Lab

What Kind of Process Could be Sensitive to the x-Dependence?

Create an entanglement between the internal *x* and an externally measured variable?

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}\boldsymbol{x} \frac{F(\boldsymbol{x},\xi,t)}{x - x_p(\xi,\boldsymbol{q}) + i\varepsilon}$$

Change external *q* to sample different part of **x**.

Double DVCS (two scales):

$$x_p(\xi, q) = \xi\left(\frac{1-q^2/Q^2}{1+q^2/Q^2}\right) \to \xi \text{ same as DVCS if } q \to 0$$

Production of two back-to-back high pT particles (say, two photons):

 $\pi^{-}(p_{\pi}) + P(p) \rightarrow \gamma(q_{1}) + \gamma(q_{2}) + N(p')$ Hard scale: $q_{T} \gg \Lambda_{\text{QCD}}$ Soft scale: $t \sim \Lambda_{\text{OCD}}^{2}$

Qiu & Yu JHEP 08 (2022) 103

 $x \leftrightarrow q_T$

$$\mathcal{M}(t,\xi,q_T) = \int_{-1}^{1} \mathrm{d}x \, F(x,\xi,t;\mu) \cdot C(x,\xi;q_T/\mu) + \mathcal{O}(\Lambda_{\mathrm{QCD}}/q_T) \longrightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}t \, \mathrm{d}\xi \, \mathrm{d}q_T} \sim |\mathcal{M}(t,\xi,q_T)|^2$$

$$q_T \text{ distribution is "conjugate" to x distribution}$$

Enhanced *x*-Sensitivity: (1) Diphoton Meso-production

Qiu & Yu, PRD 109 (2024) 074023

In addition to

$$F_0(\xi, t) = \int_{-1}^{1} \frac{dx F(x, \xi, t)}{x - \xi + i\epsilon}$$

When two photons are radiated from the same charged line

 $i\mathcal{M}$ also contains

$$I(t,\xi;z,\theta) = \int_{-1}^{1} \frac{dx F(x,\xi,t)}{x - \rho(z;\theta) + i\epsilon \operatorname{sgn}\left[\cos^2(\theta/2) - z\right]}$$

$$\rho(z;\theta) = \xi \cdot \left[\frac{1-z+\tan^2(\theta/2)z}{1-z-\tan^2(\theta/2)z}\right] \in (-\infty,-\xi] \cup [\xi,\infty)$$

Enhanced x-Sensitivity: (2) γ - π Pair Photoproduction

Enhanced x-Sensitivity: γ - π Pair Photoproduction (at JLab Hall D)

D Polarization asymmetries:

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta\,d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t|d\xi\,d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma \,A_{LL} + \zeta \,A_{UT}\cos2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta \,A_{LT}\sin2\left(\phi - \phi_\gamma\right)\right]$$

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = \pi\left(\alpha_e\alpha_s\right)^2\left(\frac{C_F}{N_c}\right)^2\frac{1-\xi^2}{\xi^2s^3}\Sigma_{UU}$$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\widetilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\widetilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\widetilde{H}]} \, \mathcal{M}_{-}^{[\widetilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

Neglecting: (1) E and \widetilde{E} ; (2) gluon channel

Qiu & Yu, PRL 131 (2023), 161902

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

27

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at upgraded energy)

Summary and Outlook

GPDs are fundamental, carrying rich information on:

- Tomographic images of confined quarks and gluons
- Underline dynamics of hadronic properties

 \Box The $2 \rightarrow 3$ SDHEPs are necessary physical processes for extracting of GPDs

- SDHEP frame is the right one for evaluating angular modulations
- Need SDHEPs with x of GPDs entangled with measured hard scales!

QCD Global analyses to extract GPDs:

- With $p \neq p'$, the choice of "+" component is not unique
- SDHEP frame for all known SDHEPs provides a unique way to define the GPDs, necessary for Global analyses
- Need to identify more factorizable SDHEPs for extracting GPDs through Global analyses

A long but challenging & exciting way to go!

SDHEPs:

