

Tagging measurements: Opportunities for Nucleon Spin Physics at the EIC

Dien Nguyen

FIU, Miami, Feb 24-28, 2025

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Spin structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x,Q^2) - q_i^{\downarrow}(x,Q^2)]$$

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Spin structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x,Q^2) - q_i^{\downarrow}(x,Q^2)]$$

Asymmetry A1 measurement:

$$A_1(x,Q^2) = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Spin structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x,Q^2) - q_i^{\downarrow}(x,Q^2)]$$

Asymmetry A1 measurement:

$$A_1(x,Q^2) = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

Proton polarized structure world's data

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Spin structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x,Q^2) - q_i^{\downarrow}(x,Q^2)]^{\circ}$$

Asymmetry A1 measurement:

$$A_1(x,Q^2) = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

$$Q^{2})_{0.71}^{0.71}$$
How about the Neutron?
How about the Neutron?
Description (u, d
quarks)
Provide the second of the se

Nucleon spin question:

$$S_z^N = S_z^q + L_z^q + J_z^g = \frac{1}{2}$$

Spin structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x,Q^2) - q_i^{\downarrow}(x,Q^2)]_{-0.03}$$

Asymmetry A1 measurement:

$$A_1(x,Q^2) = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

The need of improving the precision on Neutron spin measurement

Neutron polarized structure world's data

³He as polarized neutron target

- Neutron carries most of the spin in polarized ³He
- Precise calculation
- $\Box A_1^n$ is extracted from inclusive DIS e-He3, A_1^{He}

³не ≈ ♀ ♀ ♀ ♀ ♀ ♀ ♀ ~90% Neutron pol: Pn ~ 87%

Proton pol: Pp ~ 2.7%

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

A_1^n is extracted from inclusive DIS e-³He

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

Large model dependence

Effective neutron and proton polarization

 \Box Structure functions F_2

□A1p uncertainty.

Inclusive extraction has large systematic uncertainties

PRL 113, 232505 (2014)

What do we need?

□ High precision neutron spin measurement

□ Large coverage of x and Q²

□New measurement that minimize nuclear correction

The EIC: New opportunities

EIC x:Q2 coverage

- > Large coverage in x and Q^2 :
- Unique opportunity for new measurements: Tagging
- Polarized ³He Ion should be ready for the first EIC beam

□ Facilitates effective targets not readily found in nature

□ Novel probes of partonic structure function

Forward Tagging possible @ EIC Far forward region

Protons: B0, Off-momentum detectors and Roman Pots

□ Neutron: Zero-Degree calorimeter

Nucl. Phys. A 1026, 122447

Suppress the contribution of non-nucleonic degree of freedom

Low total momentum => "Effective" free neutron target

Event generator and processing

Existing code assumes standing nucleons.

Add ³He light-front wave function effects (fermi motion)

Produce pseudo-data and run via EIC Simulation

³He(e, e'pp)X: kinematic

Spectator momentum at the Ion Rest Frame

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

Spectator momentum at the Ion Rest Frame

Spectator protons
 = DIS off neutron

 low total spectator momentum
 = Effective "free neutron" target

Minimal nuclear effects

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

Event selection

DIS Selection:

- $Q^2 > 2 (GeV/c)^2$
- $W^2 > 4 (GeV/c)^2$
- 0.05 < y < 0.95

+Tagging :

- Both spectator protons detected.
- |p1 + p2| < 0.1 GeV

Projections:

Bin in x & Q²
Scale to 1 EIC year (100 fb⁻¹)

Compare uncertainties of extracted vs double tag A1n

$A_1^{^{3}\text{He}}$ prediction

$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{^{3}}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{^{3}}\text{He}}} A_1^p$$

 $\Box A_1^n, A_1^p : E99117 \text{ fit}$ $\Box F_2^p, F_2^D : E155 \text{ fit}$ $\Box F_2^n = F_2^D - F_2^p ; F_2^{3\text{He}} = F_2^D + F_2^p$ $\Box P_n = 0.86 \pm 0.02 ; P_p = -0.028 \pm 0.004$

 $\Box A_1^{^{3}\text{He}}$: Only includes the statistic uncertainty

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

Double Tagging Reduce A₁ⁿ Uncertianty

+ Valence-region Overlap \w JLab12 @ higher-Q²

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

 A_1^n : Also cover low-x

 \Box Double tagging @ EIC cover 0.003 < x < 0.651,

❑ Significantly reduced model dependent uncertainty compare \w (e,e'): x10 @ x < 0.1 ; x2 @ x > 0.1

Phys. Lett. B 823 (2021)13672, NIMA 167238 (2023)

A_1^n : The EIC new coverage in x and Q²

Current Proton data

What are other opportunities with e-³He at the EIC?

The unpolarized EMC effect in ³He

J. Seely et al. PRL 103 202301 (2009)

Questions:

UWhether polarized structure function modify in nuclear medium?

Uhat is the size of it?

Polarized EMC effect?

Polarized EMC ratio was predicted to be significantly different from unity
 Can we experimentally confirmed this?

e³He at EIC for Polarized EMC

Spin dependent EMC effects

 $\Box \text{Tagging deuteron: } A_1^p \rightarrow g_1^p$

Comparing g_1^p in ³He to free to bound proton

Need feasibility study for this measurement at EIC

Possibility to do this measurement at CLAS12?

R. Milner arXiv:1809.05626

e³He at EIC: Other Physics measurements

SIDIS and Tagging SIDIS:

□ Suppress the nuclear correction

□ Study for feasibility of this process is on going for the EIC

Quark polarization

See Harut's talk

Summary

□ Inclusive DIS: $g_1^n(x, Q^2)$. With large coverage in x and Q2

□ Tagging DIS: Minimize the model dependence □ Double protons tagging for High precision $g_1^n(x, Q^2)$ □ Deuteron tagging: $g_1^p(x, Q^2)$. Polarized EMC effect

□ SIDIS and Tagging SIDIS □ Flavor tagging: Δu , Δd and more

□ Feasibility study for other potential measurements

Tagging measurements: Providing – novel probes – rich physics to explore

Backup slides

- Tagged deuteron: Scattering from the $|0, 0\rangle$ state cannot contribute. Thus, measurement of $\overrightarrow{^{3}\text{He}}(\overrightarrow{e}, e'd_{\text{spectator}})$ in DIS kinematics is equivalent to scattering from a negatively polarized proton 66% of the time and 33% of the time from a positively polarized proton. This is equivalent to scattering from the polarized proton in ³He with -33% polarization. This makes polarized ³He an effective polarized proton target.
- Tagged proton: 50% of the time, the scattering arises from the $|1, 1\rangle$ state, 25% from the $|1, 0\rangle$ state and 25% from the $|0, 0\rangle$ state. In forming the spinasymmetry A in the DIS process $\overrightarrow{^{3}\text{He}}(\overrightarrow{e}, e'p_{\text{spectator}})$ there will be a contribution from scattering from the deuteron A_{ed} , the contribution arising from the $|1, 0\rangle$ state will cancel and there will a correction arising from a contribution A_{corr} from scattering from the np pair in the $|0, 0\rangle$ state, i.e.

$$A \sim \frac{2}{3}A_{ed} + \frac{1}{3}A_{corr}$$
 (29)

How large is A_{corr} ?

R.B. Wiringa et al., Phys. Rev. C 89, 024305 (2014)

FIG. 8. Momentum distributions of nucleon-nucleon pairs by spin (S) and isospin (T) in ³He in fm³ calculated using variational Monte-Carlo techniques from [9].