Charged Lepton Flavor Violation and other BSM Searches at the EIC

Andrew Hurley POETIC XI February 24-28, 2025

Searching for BSM Physics at the EIC (A non-exhaustive list)

Rare or Forbidden Standard Model Processes

- Charged Lepton Flavor Violation
- 'Dark' Vector Bosons
- Axion-like particles
 - *⊳* а→үү
 - \succ a→ $τ^{-}e^{+}$
- Heavy Neutral Leptons
- Probes of Higher Dimension SMEFT Operators
 - (see previous talk by R. Boughezal)

Precision EW Measurements of SM Parameters/Processes

- Parity Violating Asymmetries
 - Weak Mixing Angle
 - Proton

- Deuteron
- Parity Violating Asymmetries
 - Polarized and Unpolarized PDFs
 - PDF uncertainties limit many BSM sensitive channels
 - Many talks this conference

Flavor Violation Background

- Known Flavor violation
 - Quark Flavor violation
 - Beta decay first characterized in the early 1900s
 - Leads to the development of EW theory
 - Neutrino Flavor Oscillation
 - First hinted at through the solar neutrino problem
 - Observed BSM physics!
- Charged Lepton Flavor Violation
 - Unobserved so far
 - SM + Neutrino Masses allow for CLFV but suppressed
 - BR($e \rightarrow \mu \gamma$) ∝ $\Sigma (\Delta m_{ij}/M_W)^4$

University of Massachusetts

University of Massachusetts Amherst

Charged Lepton Flavor Violation (CLFV)

- ◆ Due to the suppressed SM rate (<10⁻⁵⁴) of CLFV, observation ⇒ BSM signal
- Non-observations provides constraints on many BSM models that allow CLFV
- The $e \rightarrow \tau$ process has not been as constrained by experiment as much as the $e \rightarrow \mu$ process

$$\succ$$
 $\Gamma(\tau \rightarrow e\gamma) < 3.3*10^{-8}$

>
$$\Gamma(\mu \to e\gamma) < 4.2*10^{-13}$$

Particle Data Group, Prog. Theor. Exp. Phys. **2022**, 083C01 (2022) and 2023

► EIC could improve on Γ(τ → eγ) limits set by HERA and BABAR $e_{\overline{z}}$

- Primary vertex is reconstructed (PrVtx)
 Σ_h(E-p_z) > 18 GeV (Epzh)
- 1 GeV < p_{T,missing} < 9 GeV (misspt)
 Photoproduction events
 DIS events with large missing P_T
- High P_T jet back-to-back of the τ (away1GeV)
- τ-decay signature

University of Massachusetts Amherst

5

3-prong decays	15.2(0.06)%
$\pi^{-}\pi^{+}\pi^{-}\nu$	9.31(0.05)%
$\pi^-\pi^+\pi^-\pi^0\nu$	4.62(0.05)%
Others	

Lifetime = 290.3(.5)x10⁻¹⁵s
 M₂ = 1776.86(0.12) MeV

e ⁻ <i>vv</i>	17.82(0.04)%
$\mu^- \nu \nu$	17.39(0.04)%
$\pi^- v$	10.82(0.05)%
$\pi^{-}\pi^{0}\nu$	25.49(0.09)%
$\pi^{-}\pi^{0}\pi^{0}\nu$	9.26(0.10)%
Others	

85.24(0.06)%

1-prong decays

$\tau \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$ Selection

- ★ 3 charged pions in a cone $\sqrt{(\Delta \phi 2 + \Delta \eta 2)} < 1$ (3-pion)
- 3 separate cuts using pairs of the 3-pions to constrain the secondary vertex (30µm, dRsum, decayL)

 1 charged track identifiable as a muon

 $\tau \rightarrow \mu^- \nu_\mu \nu_\tau$ Selection

- Displaced muon vertex
- Cuts to reject mis-ID'd pions
- ✤ P_T > 15 GeV

https://doi.org/10.1007/JHEP03(2021)256

Ln(Likelihood) differences between muons and pions in single particle simulations in the EPIC detector using the barrel calorimeters

https://doi.org/10.1007/JHEP03(2021)256

Purity of muons $(N_{\mu}/(N_{\mu}+N_{\pi}))$ based on example In(likelihood) cuts.

University of Massachusetts

ECCE 3-prong study: Event Selection

Figure 4: MC statistics of leptoquark (blue), DIS CC (red), DIS NC (magenta), and photoproduction (orange) events, as ten selection criteria are progressively applied on 1 M input events for each channel. Please see text for details.

3) Zhang et al. Search for $e \rightarrow T$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector (2022) <u>https://doi.org/10.1016/j.nima.2023.168276</u> University of Massachusetts

ECCE 3-prong Sensitivity

sensitivity for leptoquark cross section vs # remaining background

Calculated assuming 100 fb⁻¹ integrated luminosity.

3) Zhang et al. Search for $e \rightarrow T$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector (2022) <u>https://doi.org/10.1016/j.nima.2023.168276</u> University of Massachusetts

3) Zhang et al. Search for $e \rightarrow T$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector (2022) <u>https://doi.org/10.1016/j.nima.2023.168276</u> 11

University of Massachusetts

3) Zhang et al. Search for $e \rightarrow \tau$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector (2022) <u>https://doi.org/10.1016/j.nima.2023.168276</u>

Searching for BSM Physics at the EIC (A non-exhaustive list)

13

Rare or Forbidden Standard Model Processes

- Charged Lepton Flavor Violation
- 'Dark' Vector Bosons
- Axion-like particles
 - ⊳ а→үү
 - \succ a→τ⁻e⁺
- Heavy Neutral Leptons
- Probes of Higher Dimension SMEFT Operators
 - (see previous talk by R. Boughezal)

Precision EW Measurements of SM Parameters/Processes

- Parity Violating Asymmetries
 - Weak Mixing Angle
 - Proton

- Deuteron
- Parity Violating Asymmetries
 - Polarized and Unpolarized PDFs
 - PDF uncertainties limit many BSM sensitive channels
 - Many talks this conference

Hidden Vectors

H.Davoudiasl, R.Marcarelli, E. Neil Phys.Rev.D 108 (2023) 7, 075017

- Dark γ, B-L gauge boson, Leptophilic gauge bosons (L_τ-L_e, L_μ-L_e)
- A^{^t} decay may have a displaced vertex, allowing clean identification
 Projects improvement on interaction strength constraints for each A' studied

University of Massachusetts Amherst

Axion-Like Particles (ALPs)

R. Balkin, et al. J. High Energ. Phys. 2024, 123 (2024). https://doi.org/10.1007/JHEP02(2024)123

- QCD axions are motivated as a solution to the strong-CP problem
 - ALPs more generally arise in many theories and frameworks and are less constrained compared to the QCD axion
- Dark Matter candidate
- Prompt decay of ALPs EIC search studied by Balkin, et al.
 - Couples to photons
 - Coherent production
 - Decay to two photons

H.Davoudiasl, R.Marcarelli, E. Neil J. High Energ. Phys. 2023, 71 (2023). https://doi.org/10.1007/JHEP02(2023)071

- EIC could be sensitive to GeV scale LFV ALPs
 - Enhanced by larger ion charges (e.g. Au)

Heavy Neutral Leptons (HNLs)

B. Batell, T. Ghosh, T. Han, K. Xie J. High Energ. Phys. 2023, 20 (2023). https://doi.org/10.1007/JHEP03(2023)020

- HNLs are proposed particles with a connection to neutrino mass generation
- Signatures of Majorana and Dirac HNLs in prompt searches at the EIC were studied:
 - ➤ Majorana: e⁺3j
 - ➤ Majorana: e⁺µj+E_T
 - ➢ Dirac: ℓ⁺ℓ[−]j+E_T
- Bounds based on existing data can be improved upon at the EIC (especially in the case of a displaced decay vertex)

Weak Mixing Angle

R. Boughezal et al. https://doi.org/10.1103/PhysRevD.106.016006

University of Massachusetts Amherst

- Makes use of the polarized beams at the EIC
- Map Q² behavior in region between the Z-pole and the lower Q² measurments

Summary

- The EIC will provide ample opportunities to look for physics beyond the standard model
 - Promt searches for new interactions/particles
 - Precision measurements of SM parameters
 - Better understanding of nuclear interactions
- Current studies indicate the EIC will be able to improve constraints on BSM models at a minimum
- Current work in the ePIC EW&BSM working group is to develop analysis tools and quantify expected efficiencies+backgrounds in the planned detector configuration
- Open Question: What other BSM physics searches can be improved upon with a second detector or upgrades to the first detector?

University of Massachusetts Amherst