Topological gauge fields and partonic structure

C. Weiss (JLab), POETIC XI, 25-Feb-2025

Topological gauge fields Chiral symmetry breaking

Quark/gluon structure

Liu, Shuryak, Weiss, Zahed, PRD 110, 054021 (2024) [INSPIRE] Liu, Shuryak, Zahed, 2023+ J-Y Kim, Weiss, PLB 848, 138387 (2024) [INSPIRE] Diakonov, Polyakov, Weiss, NPB 461, 539 (1996) [INSPIRE]

Topological vacuum fluctuations

Lattice QCD configurations

Chiral symmetry breaking from zero modes

Effective description

Effective dynamics from chiral symmetry breaking

Effective operators for QCD operators

Partonic structure

Twist-2: Quark/antiquark and gluon PDFs/GPDs Twist-3: EM tensor and spin-orbit correlations F^2 : Trace anomaly and mass decomposition Future program

Topological fields: Lattice QCD configurations

Yellow/blue: Top. charge density positive/negative

Smooth field configurations from LQCD: "Cooling" of quantum fluctuations here: Leinweber et al. 2000 Gradient flow techniques e.g. Athenodorou et al 2018, Alexandrou et al 2020

QCD vacuum populated by localized gauge fields with topological charge $(32\pi^2)^{-1} \int F\tilde{F} \approx \pm 1$

 \leftrightarrow Instantons: Classical solutions of YM equations, self-dual fields $\tilde{F} = \pm F$, tunneling trajectories

Typical size $\bar{\rho} \approx 0.3$ fm, separation $\bar{R} \approx 1$ fm

Fraction of 4D space occupied $\pi^2 \bar{\rho}^4 / \bar{R}^4 \approx 0.1$

Strong fields: $(F^2)^{1/2} \approx (32\pi^2/\pi^2\bar{\rho}^4)^{1/2} \sim 2 \,\text{GeV}^2$

Topological fields: Chiral symmetry breaking

Topological gauge fields induce localized zero mode of fermion fields

$$i\gamma \nabla_{\mathrm{top}\,\pm} \Phi_{\pm} = \lambda \Phi_{\pm} \qquad \text{with} \ \lambda = 0$$

 $\gamma_5 \Phi_{\pm} = \pm \Phi_{\pm}$ definite chirality

Interactions flip chirality (not possible in perturb. int.)

Finite density of topological fields: Quarks experience chirality flip at finite rate during propagation

Chiral symmetry breaking

Order parameter: $\langle \bar{\psi} \psi \rangle \equiv \langle \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \rangle \neq 0$

Massless bosons: Phase fluctuations in flavor space

Hadron mass generation, interactions

Effective description: Instanton vacuum

 $k > \bar{\rho}^{-1}$: Integrate perturbatively: Renormalization, $\bar{\rho}^{-2} \gg \Lambda_{\text{OCD}}^2$

 $k < \bar{\rho}^{-1}$: Integrate nonperturbatively: Instantons + massive fermions

Instanton ensemble

$$\int [DA] \to \int \prod_{I,\bar{I}} dz_I \, d\rho_I \, dO_I \, d_0(\rho_I)$$

functional integral \rightarrow collective coordinates

Stable system emerges due to instanton interactions Implementations: Variational principle Diakonov, Petrov 1984; numerical simulations Shuryak 1988+

Small parameter: Packing fraction $\pi^2 \bar{\rho}^4 / \bar{R}^4 \approx 0.1$

All dynamical scales "emerge" from $\Lambda_{\rm OCD}$ via instanton density Preserves renormalization properties of QCD

Effective description: Chiral symmetry breaking

 $a \xrightarrow{b} b$

Instanton zero mode induces multifermion vertex $\det_{ab} \bar{\psi}_L^a \psi_R^b \times$ form factor

Finite density: Dynamical quark mass $M \approx$ 0.3-0.4 GeV

5

Active for momenta $k \lesssim \bar{\rho}^{-1} \approx 0.6 \text{ GeV}$

 $1/N_c$ expansion, saddle point approximation Diakonov, Petrov 1986; Pobylitsa 1989; Nowak, Verbaarschot, Zahed 1989; ...

Bosonization

 $M \, \bar{\psi}_a \, U_{ab} \, \psi_b \, \times \,$ form factor chiral meson field

Spin-flavor interactions

Correlation functions

Meson: Pion pole, η' mass

Baryons: Classical chiral field ("soliton"), N and Δ

Effective description: QCD operators

Gluon operator

 $\mathscr{F}[A]$ local QCD gluon operator

Normalized at scale $\mu = \bar{\rho}^{-1}$

Gluon operator in instanton vacuum correlation functions

$$\begin{aligned} \mathscr{F}[A] &\to \sum_{I+\bar{I}} \mathscr{F}[A_I] + \mathscr{O}(\rho^4/R^4) \\ &\left\langle \dots \mathscr{F}[A] \dots \right\rangle_{\text{inst}} \to \left\langle \dots \mathscr{F}_{\text{eff}}[\bar{\psi},\psi] \dots \right\rangle_{\text{eff}} \end{aligned}$$

 $\mathscr{F}_{\text{eff}}[\bar{\psi},\psi] = \mathscr{N} \times \mathscr{F}[A_I] \times \text{Projector on zero mode}$

Evaluated in gluon field of single I(I)

Converted to effective fermionic operator in effective theory of massive fermions

Coupling through zero modes \leftrightarrow 'tHooft vertex

Systematic construction in saddle-point approximation $1/N_c$ [Diakonov, Polyakov, Weiss, 1995]

Advantages of effective operator representation: Universal, relations between hadronic matrix elements, insight into origin of gluonic structure

Twist-2: Quarks and gluon distributions

Twist-2 spin-n QCD operators, scale $\mu = \bar{\rho}^{-1}$

Matrix elements = moments of PDFs/GPDs

$$(O_{\text{eff}}^{q})_{\alpha_{1}...\alpha_{n}} = \bar{\psi}\gamma_{\{\alpha_{1}}\partial_{\alpha_{2}}...\partial_{\alpha_{n}\}}\psi + \mathcal{O}(\rho^{4}/R^{4})$$
$$(O_{\text{eff}}^{g})_{\alpha_{1}...\alpha_{n}} = 0 + \mathcal{O}(\rho^{4}/R^{4})$$

Twist-2 quark/antiquark operators $\mathcal{O}(1)$

Twist-2 gluon operators suppressed in ρ/R

Reason: O(4) symmetry of instanton field

 $\int dx \, x \, [q + \bar{q}](x) = 1$: Momentum sum rule saturated by quarks + antiquarks at LO in ρ/R

Twist-2: Instanton field subsumed in massive quarks/antiquarks, no direct effect

Twist-2: Polarized antiquarks in nucleon

Compute quark/antiquark PDFs/GPDs using effective operators

Nucleon's antiquark content $\mathcal{O}(1)$, exhibits rich spin-flavor dependence

Twist-3: Instanton-induced interactions

$$O^{\alpha\beta}(x) = \bar{\psi}(x) \gamma^{[\alpha} \nabla^{\beta]} \tau \psi(x)$$

$$\int_{\text{eff}} effective \text{theory}$$

$$O^{\alpha\beta}_{\text{eff}}(x) = \bar{\psi}(x) \left(\gamma^{[\alpha}\partial^{\beta]}\tau + \frac{i}{4}M\sigma^{\alpha\beta}[U^{\gamma_5}(x),\tau]\right)\psi(x)$$

Twist-3 QCD operator, quark spin density in EMT $\nabla \equiv \partial - iA$ contains gauge potential

Effective operator (bosonized form). Instantons induce spin-flavor dependent interaction of massive quarks with chiral field J-Y Kim, Weiss 2024

Also operator $\gamma^{\alpha}\gamma_5$, quark spin-orbit correlations

QCD equations of motion

$$O^{\alpha\beta}(x) = -\frac{1}{4} \epsilon^{\alpha\beta\gamma\delta} \partial_{\gamma} [\bar{\psi}(x) \gamma_{\delta}\gamma_{5}\tau \psi(x)]$$

QCD operator relation from QCD EOM $\hat{\nabla}\psi = 0$

Effective operator obeys same relation because of effective EOM $[\hat{\partial} - MU^{\gamma_5}]\psi = 0$

Consistency effective dynamics \leftrightarrow effective operators Numerical results \rightarrow discussion

Twist-3 non-forward: Instanton field induces spin-flavor dependent chiral interactions, O(1) dynamical effect on quark spin density and spin-orbit correlations

Twist-4: *F*² and trace anomaly

 $\langle N' | F^2(0) | N \rangle = C(t) m_N \bar{u}' u$

 $C(0) = -\frac{32\pi^2}{b}$

Nucleon form factor of F^2

Relation from QCD trace anomaly $T_{\alpha\alpha}(x) = -\frac{b}{32\pi^2} F^2(x)$

$$b = \frac{11}{3}N_c - \frac{2}{3}N_f$$
 QCD beta function coefficient

[Shifman, Vainshtein, Zakharov 1978; Novikov SVZ 1981]

Instanton number fluctuations

Trace anomaly expressed in instanton number fluctuations: Grand canonical ensemble [Diakonov, Polyakov, Weiss, 1995]

$$\frac{\overline{(N-\bar{N})^2}}{\bar{N}} = \frac{4}{b}$$

 $F^2 \propto N$

Variance controlled by QCD beta function "Vacuum compressibility"

Effective operator couples to fluctuations \rightarrow nucleon matrix element $\,\sim 1/b$

Instanton vacuum realizes low-energy theorems from trace anomaly. Suitable for analyzing hadron mass decomposition, form factors of F^2

Twist-4: Scalar gluon form factor

Pion scalar gluon form factor

$$\pi(p') |F^2(0)| \pi(p)\rangle = -\frac{32\pi^2}{b} (2M_\pi^2) G_\pi(Q^2)$$

Covers momentum transfers $Q \ll \bar{\rho}^{-1}$ and $Q \sim \bar{\rho}^{-1}$

Liu, Shuryak, Weiss, Zahed, PRD 110, 054021 (2024)

Includes mixing of scalar gluonic and quark-antiquark modes

Good agreement with LQCD results

χQCD Collab: B. Wang et al., Phys.Rev.D 109 (2024) 094504 see also Hackett et al. 2023

Gluonic structure of nucleon is central to EIC physics program... need to invest in analyzing/interpreting/understanding it based on concepts of nonperturbative dynamics

Effective description of QCD vacuum based on topological gauge fields

Parametric ordering of quark/gluon structure

Analytic approach, synergistic to LQCD

Results can be validated by gradient-flow lattice QCD calculations (future possibilities)

Dynamical effects of topological gauge fields

Twist-3: Spin-flavor interactions in nonforward matrix elements - EMT, spin-orbit correlations

Twist-4: Trace anomaly in hadrons realized/explained by ``topological vacuum compressibility"

Recent advances Shuryak, Zahed, Liu 2023+

Include semiclassical gauge fields beyond well-separated instantons: $I\bar{I}$ molecules. Twist-2 gluonic operators $\neq 0$

Derive light-front structure from instanton vacuum: Potentials, wave functions

Supplemental material

Effective description: Nucleon structure

3-point functions include disconnected quark diagrams... connected by chiral field!

Example: Axial and vector and current matrix elements for SU(2) flavor [Review: Christov et al 1995. Many more results: Sigma term, $N \rightarrow \Delta$, SU(3), ...]

Systematic $1/N_c$ expansion

Twist-3 operator $O_5^{\alpha\beta}(x) = \bar{\psi}(x) \gamma^{[\alpha} \gamma_5 \nabla^{\beta]} \tau \psi(x)$ describing quark spin-orbit correlations Nucleon form factor $\tilde{F}^{u+d}(t)$ Instanton-induced interaction term make large contribution, ensures sum rule with vector form factor [J-Y Kim, H-Y Won, H-C Kim, Weiss 2024]