Studying hadronization at Belle II for the EIC

Cynthia Nuñez on behalf of the Belle II collaboration POETIC XI February 24, 2025

Research supported by:

Office of Science

$\mathsf{Belle} \to \mathsf{Belle} \mathsf{II}$

Belle at KEKB (1999 - 2010) → Belle II at SuperKEKB (2019 - present)

- B factory at Tsukuba, Japan
- Asymmetric e^+e^- collider at collision

energies at or near $\Upsilon(4S)$

Image from: Phys. Rev. Accel. Beams 26, 013201 (2023)

$\mathsf{Belle} \to \mathsf{Belle} \amalg$

Belle at KEKB (1999 - 2010) → Belle II at SuperKEKB (2019 - present)

- B factory at Tsukuba, Japan
- Asymmetric e^+e^- collider at collision energies at or near $\Upsilon(4S)$
- Belle
 - Collected about $\int \mathcal{L}dt = 980 \text{ fb}^{-1}$
- Belle II
 - Run 1 (2019-2022)
 - $\int \mathcal{L}dt = 424 \text{ fb}^{-1}$
 - Run 2 (2024-present)
 - In Dec. 2024, achieved luminosity of $5.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Updated on 2025/01/06 16:16 JST

Belle II Detector @ SuperKEKB

• Large acceptance with good vertexing, PID, and tracking

KEK Report 2010-1 [arXiv:1011.0352]

EM calorimeter

Energy resolution: 1.6-4% Barrel: CsI(TI) + waveform sampling Endcap: waveform sampling

electrons (7 GeV)

Vertex detector

PXD: inner 2 layers pixel detectors SVD: outer 4 layers strip sensors IP resolution: 15 μ m

Central drift chamber

Spatial resolution 100 μ m dE/dx resolution 5% p_T resolution 0.4%

KL and muon detector

Outer barrel: Resistive Plate Counter Endcap/inner barrel: scintillator

Particle identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH) Kaon eff. 90% Fake π rate 5% Mt. Tsukub

positrons (4 GeV)

Hadronization at Belle II

 $\sigma^{lN \to lhX} = PDF \otimes \hat{\sigma} \otimes FF$

- Hadronization: how particular hadrons are formed from scattered quarks and gluons (partons)
- Fragmentation Functions (FF): probability distribution of a parton fragmenting into a specific hadron
- Transverse momentum dependent (TMD): spinmomentum correlations

Important processes in studying hadron formation

Progress in Particle and Nuclear Physics (2016) pp. 136-202

Image from arXiv:2304.03302v1

 $\sigma^{pp \to hX} = PDF \otimes PDF \otimes \hat{\sigma} \otimes FF$

Hadronization at Belle

Belle
measurements
sensitive to:

- Collins FF
- Di-hadron FF
- Polarizing FF

. . .

 Phys. Rev. Lett. 122, 042001

 Transverse momentum dependent

 Phys. Rev. D 99, 112006 (201)

 Inclusive cross sections of sin

 Phys. Rev. D 101, 092004 (201)

zimuthal asymmetries in inclusive production of hadron
Phys. Rev. Lett. 96, 232002 (2006)Phys. Rev. D 78, 032011 (2008) [Phys.Rev.D 86, 039905 (2012]
ransverse polarization asymmetries of charged pion pairs
Phys. Rev. Lett. 107, 072004 (2011)
nclusive cross sections for pairs of identified light charged hadrons and for single
Phys. Rev. D 92, 092007 (2015)
nvariant-mass and fractional-energy dependence of inclusive production of di-hadrons
Phys. Rev. D 96, 032005 (2017)
roduction cross sections of hyperons and charmed baryons
Phys. Rev. D 97, 072005 (2018)
Transverse $\Lambda/\overline{\Lambda}$ Hyperon
Phys. Rev. Lett. 122, 042001 (2019)
ransverse momentum dependent production cross sections of charged pions, kaons and protons
Phys. Rev. D 99, 112006 (2019)
nclusive cross sections of single and pairs of identified light charged hadrons
<u>Phys. Rev. D 101, 092004 (2020)</u>
Production cross section of light and charmed mesons
Belle preprint 2024-09, KEK Preprint 2024-30, submitted to PRD

Hadronization at Belle

 $x_p = p_h / p_{max}$

- R. Seidl, "Production cross sections of light and charmed mesons in e^+e^- annihilation near 10.58 GeV" Belle preprint 2024-09, KEK Preprint 2024-30, submitted to PRD
- Comprehensive study of production cross section of light and charmed mesons
- Improved ISR corrections for D-mesons, and detailed comparison with various MC tunes
- Important for future SIDIS measurements at the EIC

Charmed mesons

Hadronization at Belle II and for the EIC

- Belle II can offer high precision, comprehensive measurements essential for the EIC
 - Clean environment for detailed studies of hadronic final states
 - Multi-dimensional analyses of FFs, correlations, heavy flavor, and hadronization effects in jets
 - Essential for understanding transverse momentum of partons in measurements of PDFs and spin-structure of nucleon at the EIC

 $\sigma^{lN \to lhX} = PDF \otimes \hat{\sigma} \otimes FF$

See Snowmass whitepaper arXiv:2204.02280

+ . . .

Current ongoing analyses at Belle II

- 1. Di-hadron Fragmentation Functions
- 2. Λ Polarization
- 3. TMD Jet Functions

- $H_1^{\triangleleft}(z, M, P_h, \theta)$ FF describe fragmentation of polarized quark into pair of spin-0 hadrons
- Spin correlation between the qq pair results in correlating between the azimuthal angles of dihadron pairs produced
- Belle measured the azimuthal asymmetries for dihadrons measured as a function of z_h and m_h

Phys. Rev. Lett. 107, 072004 (2011)

Ongoing analysis: Katherine Parham, Duke University

Thrust: $T = \max \frac{\Sigma_h |P_h^{CMS} \cdot \hat{T}|}{\Sigma_h |P_h^{CMS}|}$ Cuts on thrust provide clean

 $q\overline{q} \ (q \in u, d, s, c)$ event sample

Partial wave expansion

- More complex partial wave contribution to transverse polarization dependent DiFF
- Dependence on m, z, p_t, θ, ϕ
- Important to understanding production at the EIC
- Belle II statistics enable multidimensional analysis

JPS Conf.Proc. 37 (2022) 020109

 $\sin \theta_D$ decay moment for $\pi^+\pi^-$ pairs; Belle results (655 fb⁻¹)

- Kaon inclusive
 - Measurement with K^+K^- , $K^+\pi^-$, or π^+K^- pairs
 - Results of H[∢]₁ can be used to describe strange quark distribution in the nucleon

• Jet axis

- Using jets axis instead of $q\bar{q}$ thrust axis
- Results link FFs in e^+e^- to SIDIS

New measurement important for upcoming experiments at JLab and the EIC

Jets: collimated spray of particles originating from partons in collision

Transverse Λ Polarization at Belle $z_h = 2E_h/\sqrt{s}$

• $\Lambda \rightarrow p\pi^-$ self analyzing decay

 $\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$ $\alpha_{\Lambda} = 0.748 \pm 0.007 \text{ (PDG 2023)}$

- Nonzero transverse polarization observed for Λ and $\overline{\Lambda}$ as function of z and p_T
- Investigate feed-down contributions from Σ^0 and charm decays

Transverse Λ Polarization at Belle $z_h = 2E_h/\sqrt{s}$

• $\Lambda \rightarrow p\pi^-$ self analyzing decay

 $\frac{1}{N}\frac{dN}{d\cos\theta^*} = (1 + \alpha_{\Lambda}P\cos\theta^*)$

 α_{Λ} = 0.748 ± 0.007 (PDG 2023)

- Nonzero transverse polarization observed for Λ and $\overline{\Lambda}$ as function of z and p_T
- Investigate feed-down contributions from Σ^0 and charm decays
- Polarization measurement also with respect to hadron in opposite hemisphere

Phys. Rev. Lett. 122, 042001 (2019)

Transverse Λ Polarization

- Belle measurement data accurate enough for phenomenological studies
- Used for extractions of polarizing FF and Λ polarization predictions in $ep \rightarrow \Lambda X$; for example:

Transverse Λ Polarization

- Belle measurement data accurate enough for phenomenological studies
- Used for extractions of polarizing FF and Λ polarization predictions in $ep \rightarrow \Lambda X$

Measurements at Belle II:

- Reduce uncertainties from feed-down and the prompt $\boldsymbol{\Lambda}$
- Λ polarization with respect to the plane spanned by beam axis and Λ momentum

Λ Spin Correlation

- Entanglement as a probe to hadronization
 - Spin correlation extracted from the correlation of relative spin projections
 - $N \propto 1 + \alpha^2 P_{\Lambda,\Lambda} \cos(n\theta_{ab})$
 - Get expected zero result in simulation

FIG. 3. Illustration of double Λ polarization; here $\hat{a}(\hat{b})$ denotes the momentum direction of $\Lambda_A(\Lambda_B)$ daughter particle in the $\Lambda_A(\Lambda_B)$ rest frame.

Phys. Rev. D 106, L031501 (2022) Phys. Rev. D 109, 116003 (2024)

Longitudinal spin transfer via dihadron polarization Helicity correlation of two produced partons • Alternative approach to traditional methods ٠ γ^* Image by S.Y. Wei, DIS24 using polarized beams and targets Leading Quark TMDFFs -Quark Spin Hadron Spin Quark Polarization Phys.Lett.B 839, 137821 (2023) 0.0 **Un-Polarized** Longitudinally Polarized Transversely Polarized (U) (L) **(T)** o e Inpola (or Spin adron $H_1^{\perp} = (\uparrow)$ $D_1 = (\bullet)$ -0.2-0.2Unpolarized Collins CLL \mathcal{C}_{LL} H_{1L}^{\perp} = \nearrow $G_1 = (\bullet) \to - (\bullet) \to$ Polarized Hadrons DSV DSV -0.4-0.4 $z_1 = 0.3$ $z_1 = 0.5$ Helicity Sce. I Sce. 1 Q = 10.58 GeVQ = 10.58 GeV- Sce. II Sce. II H_1 = D_{1T}^{\perp} = (G_{1T}^{\perp} = (-)··· Sce. III ···· Sce. III H_{1T}^{\perp} = 0.6 0.7 0.8 0.20.30.6 0.7 0.8 0.40.5**Polarizing Fl** z_2 z_2 Image from arXiv:2304.03302v1 $\frac{1}{N}\frac{dN}{d\cos\theta_1^*d\cos\theta_2^*} = \frac{1}{4} + P_L^{\Lambda}\frac{1}{4}\alpha\cos\theta_1^* + P_L^{\bar{\Lambda}}\frac{1}{4}\alpha\cos\theta_2^* + \mathcal{C}_{LL}\frac{1}{4}\alpha^2\cos\theta_1^*\cos\theta_2^*,$

TMD Jet Functions

• TMD FF \rightarrow TMD Jet Functions

- Use jets (instead of hadrons) in final state
 - Jet momentum is perturbatively calculable
 - Reduce uncertainty and improve sensitivity to PDFs in SIDIDS
- Measuring the jet q_T spectrum:

$$\boldsymbol{q} = \frac{\boldsymbol{p}_1}{\boldsymbol{z}_1} + \frac{\boldsymbol{p}_2}{\boldsymbol{z}_2}$$

Require decorrelation to be small: $q_T \equiv |\mathbf{q}| \ll \frac{\sqrt{s}}{2}$

Phys. Rev. Lett. 121, 162001 (2018) J. High Energ. Phys. 2019, 31 (2019)

TMD Jet Functions – q_T Spectrum

dơ/dq_T [nb/GeV]

1.4

0.8

0.6

0.4

0.2

0

0.2

0.4

Theoretical predictions for q_T predictions

<u>JHEP10(2019)031</u> arXiv:2204.02280v2

R = 0.1

z = 0.713

1.6

 $E_{jet} > 3.75 \, \text{GeV}$

1.8

<u>arxiv:2204.02280v2</u>

• Statistical projections with Belle II simulation

1.2

1.4

N³LL theory curve

0.8

0.6

Belle II statistical projections

with 10fb⁻¹ simulated data

• Sensitivity of the TMD to nonperturbative effects

Ongoing analysis: Simon Schneider, Duke University

q_ً[GeV]

TMD Jet Functions – T-odd side of jets

- T-odd jet components:
 - Recently found to survive due to non-perturbative effects
 - Important to access nucleon spin structure
- T-odd component can couple to the proton transversity at the EIC

Azimuthal asymmetry $R^{J_1J_2} = 1 + \cos(2\phi_1) \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{F_T(q_T)}{F_U(q_T)}$ $R = 2\int d\cos\theta \frac{d\phi_1}{\pi} \cos(2\phi_1) R^{J_1J_2}$

Ongoing analysis: Simon Schneider, Duke University

Summary

- Belle II is currently collecting data during Run 2
- Belle and Belle II play an important role in understanding hadronization dynamics

arXiv:2204.02280

- Provide key information on hadronization for future EIC measurements
- Lots of measurement opportunities at Belle II, with several current ongoing analyses underway
- Future QCD studies with polarized electron beams at SuperKEKB Chiral Belle Project: <u>arXiv:2205.12847v3</u>

Thank You!

Thank you for the help in preparing this presentation to S. Schneider, K. Parham, A. Vossen, and the Belle II collaboration!

Back up

Belle II Detector @ SuperKEKB

BELLE2-NOTE-PL-2020-024 BELLE2-CONF-PH-2022-003 BELLE2-NOTE-PL-2021-008 BELLE2-NOTE-PL-2020-031 BELLE2-CONF-PH-2021-002

Belle II event shape: thrust axis

- Using B-factory for hadronization studies
 - Events produced at or near $\Upsilon(4S)$ have different shapes
 - Cuts on thrust provide clean $q\bar{q}$ event sample

Azimuthal asymmetries for $e^+e^- \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ Belle results (670 fb⁻¹)

Phys. Rev. Lett. 107, 072004 (2011)

Belle results – a recent review

Belle data provided essential measurements, including recent results:

R. Seidl et al., "Transverse momentum dependent production cross sections of charged pions, kaons and protons produced in inclusive e^+e^- annihilation" at \sqrt{s} =10.58 GeV

Belle results – a recent review

Belle data provided essential measurements, including recent results:

H. Li, A. Vossen, et al., "Azimuthal asymmetries of back-to-back $\pi^{\pm} - (\pi^0, \eta, \pi^{\pm})$ pairs in e^+e^- annihilation" Phys.Rev.D 100 9, 092008 (2019)

TMD Jet Functions – q_T Spectrum

Theoretical predictions for q_T predictions

J. High Energ. Phys. 2019, 31 (2019)

Ongoing analysis: Simon Schneider, Duke University

Belle II upgrades

KL and muon detector

2 innermost barrel RPCs and endcaps replaced with scintillators

Particle identification - TOP (barrel) - ARICH (forward)

> **TOP replaced TOF** ARICH replaced endcap ACC

positrons (4 GeV)