Gluon Saturation Effects in Exclusive Heavy Vector Meson Production

Jani Penttala

In collaboration with Christophe Royon

Based on 2411.14815

University of California, Los Angeles

SURGE collaboration

POETIC XI

Miami, Florida

Gluon saturation at high energy

- HERA: rapid growth of gluon distribution at small x
- Growth cannot go on indefinitely: violation of unitarity
- Will eventually be tamed by gluon recombination effects
- Prediction from theory: gluon saturation
- Signs of saturation in the experimental data but no definite evidence

H1 and ZEUS (0911.0884)

- Saturation effects characterized by the saturation scale Q_s^2
- For saturation to be important:

Momentum scale in the process has to be comparable to Q_s^2

- However: Q_s^2 is quite small...
 - Protons: $Q_{s,p}^2 = \mathcal{O}(1 \text{ GeV})$
 - Nuclei: $Q_{s,A}^2 \sim A^{1/3} Q_{s,p}^2$
 - \Rightarrow Nuclear enhancement of saturation!
- Energy dependence: $Q_s^2 \sim 1/x^{0.3}$
- Search for saturation:

Need a high energy (small x) and a low momentum scale

Rezaeian (1001.5266)

Ryskin, Z.Phys.C 57 (1993) 89-92

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma(\gamma^* + A \to V + A) \sim \left[xg(x)\right]^2$$

 \Rightarrow Very sensitive to the gluon structure of the target!

• Heavy vector mesons:

Heavy quark mass makes the process perturbative

- Mass also low enough for saturation!
- Can be measured in:
 - DIS: Electron-ion collisions (HERA, EIC, ...)
 - Ultra-peripheral collisions (LHC, ...)

Invariant amplitude for exclusive vector meson production

$$-i\mathcal{A}^{\lambda} = 2\int \mathrm{d}^{2}\mathbf{b}\,\mathrm{d}^{2}\mathbf{r}\,\frac{\mathrm{d}z}{4\pi}e^{-i\mathbf{b}\cdot\mathbf{\Delta}}\Psi_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z)\mathcal{N}(\mathbf{r},\mathbf{b},\mathbf{x}_{\mathbb{P}})\Psi_{V}^{q\bar{q}*}(\mathbf{r},z), \qquad t = -\mathbf{\Delta}^{2}$$

- $\Psi_{\gamma^*}^{q\bar{q}}$: Photon light-cone wave function
- N: Dipole-target scattering amplitude
- $\Psi_V^{q\bar{q}}$: Vector meson light-cone wave function

Invariant amplitude for exclusive vector meson production

$$-i\mathcal{A}^{\lambda} = 2\int \mathrm{d}^{2}\mathbf{b} \,\mathrm{d}^{2}\mathbf{r} \,\frac{\mathrm{d}z}{4\pi} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} \Psi_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z) \mathcal{N}(\mathbf{r},\mathbf{b},\mathbf{x}_{\mathbb{P}}) \Psi_{V}^{q\bar{q}*}(\mathbf{r},z), \qquad t = -\mathbf{\Delta}^{2}$$

• Dependence on energy *W* in the dipole amplitude:

$$\mathbf{x}_{\mathbb{P}} = \frac{Q^2 + M_V^2 - t}{W^2 + Q^2 + m_N^2}$$

• $Q^2 = 0$ for photoproduction

- Meson wave function is nonperturbative has to be modeled
- Various different approaches:

Nonrelativistic QCD, basis light-front quantization...

• We use the Boosted Gaussian that has been found to work well phenomenologically: Kowalski, Motyka, Watt (hep-ph/0606272)

$$\phi_{\lambda}(r,z) = \mathcal{N}_{\lambda} \exp\left(-\frac{m_Q^2 \mathcal{R}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}^2} + \frac{m_Q^2 \mathcal{R}^2}{2}\right)$$

where $\mathcal{N}_{\lambda},\,\mathcal{R}$ are parameters fixed by normalization and leptonic decay width

- Describes the interaction with the target
- High energy: eikonal approximation

$$N(\mathbf{x},\mathbf{y},x_{\mathbb{P}}) = 1 - rac{1}{N_c} \left\langle \mathsf{Tr} \ V(\mathbf{x}) V^{\dagger}(\mathbf{y})
ight
angle_{x_{\mathbb{P}}}$$

- Universal: appears in different processes
- Energy dependence given by a perturbative evolution equation

Balitsky–Kovchegov equation

$$\frac{\partial}{\partial \log 1/x} \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1) = \frac{\mathcal{N}_c \alpha_s}{2\pi^2} \int \mathrm{d}^2 \mathbf{x}_2 \, \frac{\mathbf{x}_{01}^2}{\mathbf{x}_{20}^2 \mathbf{x}_{21}^2} \times \left[\mathcal{N}(\mathbf{x}_0, \mathbf{x}_2) + \mathcal{N}(\mathbf{x}_1, \mathbf{x}_2) - \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1) - \mathcal{N}(\mathbf{x}_0, \mathbf{x}_2) \mathcal{N}(\mathbf{x}_1, \mathbf{x}_2) \right]$$

- Saturation effects introduced by the nonlinear term in the BK equation
- Without nonlinear term: BFKL evolution
 - \Rightarrow Compare BK and BFKL evolutions to estimate saturation effects
- We also include the dependence on the impact parameter (usually neglected)
 - Neglecting it can lead to overestimating saturation effects JP et al. (2411.13533)

Initial condition for the high-energy evolution

• Initial condition chosen as the impact-parameter-dependent McLerran–Venugopalan model JP et al. (2411.13533) $\mathbf{r} = \mathbf{x} - \mathbf{y}, \ \mathbf{b} = \frac{1}{2}(\mathbf{x} + \mathbf{y})$

$$\mathcal{N}(\mathbf{x}, \mathbf{y}) = 1 - \exp\left(-\int \mathrm{d}^2 \mathbf{z} \,\kappa T(\mathbf{z}) \Big[\mathcal{K}_0(m|\mathbf{x} - \mathbf{z}|) - \mathcal{K}_0(m|\mathbf{y} - \mathbf{z}|)\Big]^2\right)$$

- T(z) = the thickness function describing the shape of the target
- $\kappa = {\rm constant} \ {\rm describing} \ {\rm the} \ {\rm strength} \ {\rm of} \ {\rm the} \ {\rm color} \ {\rm field}$
- m = infrared regulator

Proton

- T(z) = Gaussian
- $\bullet\,$ Parameters fixed by exclusive J/ψ

production data

Lead

• From proton to nucleus:

Change only T(z)

•
$$T(z) = Woods-Saxon$$

J. Penttala (UCLA)

Exclusive J/ψ production: proton targets

- Slight difference between BFKL and BK in the slope
 - Can be compensated by adjusting $\alpha_{\rm s}$ for BFKL
- Proton data described well by both BK and BFKL equations

JP, Royon (2411.14815)

Exclusive J/ψ production: nuclear targets

- Fit the model to the proton data
 - \Rightarrow Predictions for heavy nuclei
- Differences between BK and BFKL: a factor of 2 for W ~ 1000 GeV
- BFKL results linear as predicted
- BK describes the data much better
- Still not exact agreement: What could explain this?

JP, Royon (2411.14815)

Exclusive J/ψ production: nuclear targets

JP et al. (2411.13533)

- Getting both proton and nuclear data to agree with the data is a very difficult problem...
- However: energy dependence very robust once fixed to the proton data!

J. Penttala (UCLA)

Saturation in VM production

Exclusive J/ψ production: nuclear suppression

- Nuclear suppresstion factor: $R_A = \sqrt{\sigma_A/\sigma_{IA}}$ where $\sigma_{IA} = \frac{d\sigma^p}{dt}\Big|_{t=0} \times \int dt \, |F_A(t)|^2$ is the impulse approximation
- Without saturation: $R_A pprox 1$
- BFKL essentially constant
 - Linear evolution: energy dependence for protons and nuclei expected to be similar
 - Clear disagreement with the data
 - Saturation provides a natural explanation

JP, Royon (2411.14815)

- Gluon saturation expected at the high-energy limit
- Difficult to measure: need both a high energy and a low momentum scale
- Exclusive heavy vector meson photoproduction is a promising process
 - $\bullet\,$ Diffractive process \Rightarrow sensitive to the gluon density
 - $\bullet\,$ Heavy quark mass \Rightarrow large enough to be perturbative, small enough for saturation
- Compare linear BFKL and nonlinear BK evolution to estimate saturation effects
- Proton targets: no sign of saturation in the current data
- \bullet Pb targets: J/ψ shows a clear preference for BK evolution
 - Saturation effects already visible in the LHC data?
- Future prospects from the EIC: different target nuclei to understand nuclear effects

Backup

Υ production

 \bullet Saturation effects much smaller \Rightarrow Not expecting sizable differences even at the LHC

• Follows from the large mass of Υ

JP, Royon (2411.14815)

J. Penttala (UCLA)