Baryon number dynamics from RHIC to the EIC

David Frenklakh

2312.15039 (PLB) with D. Kharzeev and W. Li 2405.04569 (JHEP) with D. Kharzeev, G. Rossi, G. Veneziano

Physics Opportunities at an Electron-Ion Collider XI

Florida International University

February 24, 2025

In memory of

Giancarlo Rossi

Motivation: what carries the baryon number?

Motivation: what carries the baryon number?

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

Motivation: what carries the baryon number?

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

Gauge invariance

 $B(x_1, x_2, x_3, x) = \epsilon^{ijk} \left[P(x_1, x) \ q(x_1) \right]_i \left[P(x_2, x) \ q(x_2) \right]_j \left[P(x_3, x) \ q(x_3) \right]_k$

$$P(x_n, x) \equiv \mathcal{P} \exp\left(ig \int_{x_n}^x A_\mu dx^\mu\right)$$

G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Can baryon junction carry the baryon number?

Baryonium

G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

$$\left(\frac{dN_B}{dy}\right)_{net} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} [e^{(\alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0})y} + e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y}]$$

$$Y/2 \bigvee_{P} \bigvee_{Q \in \mathcal{Q}} \bigcup_{Q \in \mathcal{Q}} B$$

Dashed lines denote junctions

-Y/2

В

`

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

$$\left(\frac{dN_B}{dy}\right)_{net} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} [e^{(\alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0})y} + e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y}]$$

$$\alpha_{\mathbb{P}} = 1 + \Delta \approx 1.08$$

$$\alpha_{\mathbb{J}_0} \approx 0.26 \xrightarrow{2405.04569}_{\text{DF, Kharzeev, Rossi, Veneziano}} y$$

$$V/2 \xrightarrow{\mathsf{P}}_{\mathsf{P}}$$

$$V/2 \xrightarrow{\mathsf{P}}_{\mathsf{P}}$$

Dashed lines denote junctions

`

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

$$\left(\frac{dN_B}{dy}\right)_{net} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} [e^{(\alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0})y} + e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y}]$$

$$\alpha_{\mathbb{P}} = 1 + \Delta \approx 1.08$$

$$\alpha_{\mathbb{J}_0} \approx 0.26 \quad {}^{2405.04569}_{\text{DF, Kharzeev, Rossi, Veneziano}} y$$

$$\left(\frac{dN_B}{dy}\right)_{net} \propto e^{-0.66Y/2} [e^{(0.82y} + e^{-0.82y}] - Y/2$$

Dashed lines denote junctions

`

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

Recent experimental results

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445 Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Tracking the baryon number with nuclear collisions

2408.15441

2205.05685

STAR Collaboration

Beam energy dependence of net-hyperon yield and its implication on baryon transport mechanism

Chun Yuen Tsang^{a,b}, Rongrong Ma^b, Prithwish Tribedy^b, Zhangbu Xu^{a,b}

DIS to probe the carrier of baryon number?

Mueller-Kancheli theorem

A.H. Mueller, Phys. Rev. D 2 (1970) 2963.O.V. Kancheli, JETP Lett. 11 (1970) 397.

Optical theorem:

Generalized to semi-inclusive scattering: Study in Regge theory $\frac{d}{dq^3} \sum_{x} \left| \begin{array}{c} p_1 & q \\ p_2 & p_2 \end{array} \right|^2 \sim \text{Disk} \xrightarrow{p_1 & p_1 \\ -q \\ p_2 & p_2 \end{array}$

SIDIS as $3 \rightarrow 3$ forward scattering

$$\mathcal{A}(s,t) \propto s^{\alpha(t)}, s \to \infty$$
$$s_1 = (p_1 + p_B)^2 = \sqrt{s} m_t e^{-y^*}$$
$$s_2 = (p_2 + p_B)^2 = \sqrt{s} m_t e^{y^*}$$

$$\left(\frac{dN_B}{dy}\right)_{net} \propto s_1^{\alpha_{\mathbb{P}}(0)-1} s_2^{\alpha_{\mathbb{J}}(0)-1}$$

The largest $\alpha_{\mathbb{J}}(0)$ is leading

Three possible processes

Mueller-Kancheli t-channel exchanges:

Intercept estimates: Topological expansion+ Feynman-Wilson gas model

2405.04569 DF, Kharzeev, Rossi, Veneziano

Three possible processes

Leading

Mueller-Kancheli t-channel exchanges:

Intercept estimates: Topological expansion+ Feynman-Wilson gas model

2405.04569 DF, Kharzeev, Rossi, Veneziano

Rapidity distribution of baryons in DIS

$$\left(\frac{dN_B}{dy}\right)_{net} \propto s_1^{\alpha_{\mathbb{P}}-1} s_2^{\alpha_{\mathbb{J}_0}-1}$$
$$s_1 \propto e^{Y/2-y} \qquad s_2 \propto e^{Y/2+y}$$

$$\left(\frac{dN_B}{dy}\right)_{net} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y}$$

Wide rapidity acceptance at the EIC will make it possible to measure both Y/2 and y dependence.

- Accounting for inter-species correlations in Feynman-Wilson gas improves agreement with the baryon stopping data from RHIC
- Signatures of baryon junctions in semi-inclusive DIS for the EIC:
 - characteristic rapidity dependence
 - baryon flavor content
 - relation between meson multiplicities in rapidity intervals