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How does the spin of the nucleon arise?

1 1

Orbital angular

Proton spin  Quark helicity ~ Gluon helicity momentum

Spin puzzle: quarks carry only about 30% of the proton’s
spin: A2 ~ 0.33, which is much smaller than predicted by
the quark model A2 ~ 0.6

The small value of A2 can be explained as due to the interplay between
parton dynamics and the topology of the QCD vacuum in the helicity
structure of the proton

— Physics Opportunities at EIC: by measuring a certain class of spin
dependent observables in the high-energy scattering we get access to
fundamental topological properties of QCD




Deep Inelastic scattering
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First moment of the g, structure function

The helicity can be extracted from the first moment of the g, structure function
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Formally A2 can be define as a matrix element of the isosinglet axial
vector current JZ' operator between proton states: Ag =3F — D
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The anomaly equation

The fundamental property of the Jg current is the anomaly equation.
Related to the first moment of g,
o nfls

oI (x) = L= T (FW(:B)FW(QZ)) = 2n; 0, K"
T

The isosinglet current couples to the topological charge
density in the polarized proton!

The anomaly arises from the non-invariance of the path
integral measure under chiral (y5) rotations. Topological
properties of the QCD vacuum! k. Fujikawa, PRL. 42, 1195 (1979)

Chern-Simons current:
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- http://www.physics.adelaide.edu.au/theory/staff/leinweber/Visual QCD/QCDvacuum/



The triangle diagram

In the leading order the anomaly is generated by the triangle JE
diagram and can be seen from the structure of the diagram in the
the off-forward limit;:

Exact result!
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e \ P

infrared topological charge

nomal | .
(anomaly) pole density R. L. Jaffe, A. Manohar

Nucl. Phys., B337, 509 (1990)
Shore, Veneziano (1990)
Narison, Shore, Veneziano,

Adler-Bell-Jackiw anomaly

The triangle diagram is not local! The anomaly manifests itself as an infrared pole. hep-ph/9812333
Taking a divergence we obtain the anomaly equation K.-F. Liu (1992)
T Qg
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Infrared pole in the box diagram

Similarly the infrared pole was observed in the off-forward box diagram
— g structure function, GPDs (talk by S. Bhattacharya)
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/ Tarasov, Venugopalan (2020-2022)

infrared pole Bhattacharya, Hatta, Vogelsang (2023)



Anomaly pole and the U ,(1) problem

The resolution of the anomaly pole is deeply related to the
famous U,(1) problem in QCD: instead of an infrared pole

1/1? of a “primordial” ninth Goldstone boson 7 there is a
heavy i’ (m, & 95 7MeV)

There is no Goldstone pole just as there is no anomaly pole
in the QCD spectrum

The dynamical interplay between the physics of the anomaly, and that
of the isosinglet pseudoscalar U,(1) sector of QCD resolves both
problems simultaneously: the lifting of the 77 pole by topological mass
generation of the #’ and the cancellation of the anomaly pole

Tarasov, Venugopalan (2022),
see also Bhattacharya, Hatta, Schoenleber (2024) in
the context of GPDs

This mechanism relates the helicity A2 to the topology
of the QCD vacuum

?

n 7

the same
mechanism




Topological screening

Shore, Veneziano (1992)
Tarasov, Venugopalan (2022)

Topological susceptibility:

Yaen(l?) = / T e (0] T(2)2(0)[0)qen




What about finite quark mass?

The previous results where obtained in the chiral limit.
Can the finite quark mass resolve the infrared pole?

A similar effect occurs in Eq. (5.35) if one includes the quark mass. Namely,the anomalous
gluon term ~ Ag disappears and one formally recovers the naive Eq. (5.33). Thus the contribu-
tion to g; from the anomaly is hidden in the massive theory (as well as in the M S subtraction
scheme). This result will be derived in detail in the next section.

Lampe, Reya “Spin Physics and Polarized Structure Functions” (1998)



Triangle diagram at finite quark mass

It is convenient to perform the calculation in the
formalism of the effective action

LIWI[®,ILA,B] _ / DT D i Stermion ¥, @,ILA, B,

where the action contains coupling of the quark fields to the scalar (D),

pseudoscalar (I11), vector (Aﬂ), and axial-vector (Bﬂ) fields:

Stermion|V, &, 11, A, B, U] = /d% U i — ® + i+ A +~1°B] " 0’

The expectation value of Jg in the proton can be obtained by taking the J 5
functional derivative of W:
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Worldline representation of the effective action L, ()

()
In practice, for the calculation we use the worldline representation of the
effective action: integration over trajectories x(7) and w(7) of the quark A
instead of the quantum fields 11
Zg 1 o0 _ T _ B
Wr = / doz/ dTN/ DxDi tr xw(0)exp | — / dT L) (T) i
641" J p o -

_ D’Hoker, Gagne (1996)
where the worldline Lagrangian:
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The scalar field can be rewritten as

here S(x) is a source of the quark b (Q?) — m — S (Qj)

condensate, for the triangle we set it
to zero (as in the case of QED)




Triangle diagram at finite mass (AVV) the triangle in the

chiral limit
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finite mass correction

same expression to the chiral limit

compare the finite mass term with the derivative
of the effective action with 11 (PVV):
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Triangle diagram at finite mass
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As expected the result is consistent with the
anomaly equation at finite mass:
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Triangle diagram at finite mass in the
forward limit
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Triangle diagram at finite mass in the
forward limit
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Lampe, Reya (1998)
 The "anomaly" pole from the AVV triangle is exactly Adler, Bardeen (1969)

: . . G. 't Hooft (1976)
canceled by the P_VV p0|e in the forward limit. This is a see also Castelli, Freese, Lorce, Metz, Pasquini, Rodini (2024)
well known result in QED.

* There is no anomaly pole in QED. The pole is regulated
by the finite electron mass.

 The cancellation would not occur for massless electrons
m = (. Massless QED is not a well-defined theory

However, the mechanism of resolution of the anomaly pole
in QCD is dramatically different. In the chiral limit the QCD
is a well-defined theory!




The QCD generating functional

Why the QED resolution of the anomaly pole doesn’t work
in the case of QCD? Confinement, formation of the quark
condensate, coupling to the proton etc.

To take into account this effects we write . _ . -
Z\B.S§.11.0 SIAV. Y. B.S.11.0
the full QCD generating functional in the € 5,5,1L0] /DA / DYDY AV Y, B,5,11,0)]

presence of the external sources

S[A, U, ¥, B,S,T1,0] = /d% (ﬁQCD + B, Uyt U + ST + Wiy U + @Q)

the quark condensate responsible
for spontaneous chiral symmetry
breaking in QCD
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The fundamental chiral Ward identity
for the QCD generating functional

9, 04 2Nf(SZ B ZméZ 5 5Z 5Z _
SB, 50 ST 205
~—— _ - Shore, Veneziano (1992)
/ \ /ua;k
condensate
o* J? 0 f = 2—Tr (F/WF“V) + 20m Gry5q7 new terms in QCD
7T

If we assume the QED mechanism in QCD, the 6Z/6® and 2mdZ/o11

terms cancel each other, but it still doesn’t address the last two terms In
the equation

The mechanism of regularization of the anomaly pole in QCD is different!



The QCD generating functional and the
matrix element of the current

The anomaly pole in QCD is regulated by non-perturbative effects, the mechanism
can be formalized in the effective action formalism. Using this formalism we can
represent the matrix element of the current as

<P/7‘S1‘J5M‘P7 S> — _Zng’NN(ZZ)ﬂ(PxS)/YM/YF)u(P S)
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The anomaly can be absorbed
into the contribution of the two-
point Green functions

The equation has a nice
diagrammatic representation

Jdps NN




The QCD generating functional and the
matrix element of the current

(P!, S|JE|P,S) = a(P', S) |5 Ga(l%) + IMysGp (1) |u(P, S)

the representation of the form factors
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The anomaly in the two-point Green
functions should be regulated by the non-
perturbative effects, i.e. # exchanges.
The functions should vanish in the
forward limit. How can we realize that?

dps NN




What do we know about the two-point
Green functions?
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The two-point functions are constraint by the chiral Ward

identities. There are relations between different types of the
two-point functions:
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Any form of the two-point
functions should satisfy the
chiral Ward identities
relations
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Can we adjust , ,
0000 00011

5%7

olloll
two-point Green functions

65°7Z  6°Z
5B,50" 6B,S11
forward limit?

In such a way that the

vanish in the




Wess-Zumino-Witten contributions

5°Z 6*Z 6°Z
5050 SOSIT SIISII
can be reconstructed taking into account the WZW coupling between # and topological charge density £2:

Can we say more about the form of the functions ? The form of two-point functions
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Leutwyler (1996); Herrara-Sikody et al (1997);
Leutwyler-Kaiser (2000)



WZW and two-point Green functions

QCD topological susceptibility:
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2 _ 2
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Using the WZW coupling we can construct the form of the two-point functions:
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Similar expressions can be

non-perturbative function to describe obtained for other two-point
possible deviations from WZW functions



Why is it useful? In the chiral limit this relations
yield:

0 Q XQcD|m=0(0) =0
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At finite quark mass:
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finite mass
correction



Regularization of the anomaly pole in QCD
5°Z 6*Z 6°Z
5050 SOSIT STISII

By adjusting parameters of the two-point functions , through the chiral Warad

S 87 6°Z
identities, we can get resolve the anomaly poles in and ;
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This “adjustment” leads to a number of important relations between parameters:

2m(op)
2 /

Dashen-Gell-Mann-Oakes- L
Renner (DGMOR) relation chiral limit finite mass correction




Goldberger-Treiman (GT) identity

To satisty the anomaly equation the pseudovector and
pseudoscalar sectors has to be related — GT identity: 2M N GA \/ 2N f F n Yan NN
The GT identity leads to:
2N
AY = \/ F Jn NN
2M N !

or using relations from the analysis of the two-point Green functions:

2N ¢ QXQCD (0) — X%(M (0)\ 1/2
AY = non(0) (1= m? ) o
2 M nr \/XQCD( ) ) mn XYM(O) gnNN

A

chiral limit
finite mass introduces

~ 10 % correction



Phenomenology. Back of the envelope estimate

In the OZI (Okubo-Zweig—lizuka) approximation: AXY%* = GQ%! = 0.579 + 0.021

\/MQCD,OZI(O) — Fw/\fﬁi ~ 32 MeV

Looking at the ration:

Xqcp (0)
APt — ARO4L \/ R and substituting AX*P* ~ (.33
\/XZQCD oz1(0)
we obtain
\/Xaon (0) ~ 18 MeV \/ Yorr (0) ~ 36 MeV

to be compared with the \/ / ~ 17.1 Me
recent lattice result XYM(O) . V' Bonanno (2024)

The fact that the \/ 1vm(0) estimates are in the same range is very encouraging and calls for systematic

implementation of chiral perturbation theory as well as further lattice computations of the slope of the
topological susceptibility in full QCD



Thank you for your attention!



