SIDIS Program at the EIC

Anselm Vossen

Research Supported by

20+5

SIDIS is a premier tool to probe the quark and gluon degrees of freedom

- 3D Spin-Momentum Structure
- Sea Quark Polarization
- Saturation Effects
- Fragmentation Functions
- Passage of color through nuclear matter (nFFs)

SIDIS cross-section

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} \\ &= \frac{\alpha^{2}}{x\,y\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \right. \\ &+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\ &+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\ &+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} \\ &+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})} \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right]\right\} \end{aligned}$$

- Disentangling the different contributions is not trivial
- Ratio of T to L flux – At fixed x e.g. change Q $\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}, \qquad \gamma = \frac{2Mx}{Q}.$

SIDIS X-section in the Parton Model

SIDIS physics at an EIC: Coverage

- Common theme on EIC impact
 - Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach → needed to extract multidimensional objects
 - TMD factorization is valid

Coverage to low x: access sea and gluon distributions

Longitudinal double spin asymmetries

$$\bullet\; A_{LL} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} \propto g_1$$

- Projections for Athena (2022 JINST 17 P10019)
- 3% point-to-point, 2% scale uncertainties (from Hera experience)
- *z* > 0.2
- 15.5 fb^{-1} at 18x275, other datasets scaled accordingly
- → See also double tagged A_1 (D. Nguyen's talk)

Example: Transversity Extraction from Di-hadrons

- Only proton data
- No small-*x* constraint
- See also *Phys.Lett.B* 816 (2021) 136255 for single hadrons
- Projected to be able to distinguish between lattice and phenomenology

Precision Λ physics at the EIC

8

-0.05

0.2

0.4

 z_{Λ}

- Phys.Rev.D 105 (2022) 9, 094033
- Also $\rightarrow \uparrow$ spin transfer, in-jet fragmentation
- $40 f b^{-1}$ at each energy
- Significant impact of low \sqrt{s} data

Impact Twist-3 PDF g_T

• A_{LT} (here projection with 100 fb^{-1})

EIC kinematic leverarm provides Insight into Evolution

- CS kernel sensitive to vacuum structure [Vladimirov 2020]
- Significant uncertainties on extractions
- Disagreement in different extractions and with lattice

From Bermudez-Martinez, Vladimirov, arxiv:2206.01105

EIC kinematic leverarm provides Insight into Evolution

EIC Yellow Report

Ecce projections for Collins asymmetries for $10 f b^{-1}$ at each energy (NIMA 1049 (2023) 168017)

Di-hadrons to access saturation

• Signals in di-hadron correlation and broadening large (projections here for $10 f b^{-1}$)

Early Running Constraints

Year	Species	Energy	Luminosit y (fb^{-1})	p/A polarization
Year 1	e + Ru/Cu	10×115	1	N/A
Year 2	e+d	10×130	10	N/A
Year 2	e + p	10×130	1	trans
Year 3	e + p	10×130	5	trans&long
Year 4	e + Au	10×100	0.5	N/A
Year 4	e + p	10×250	4	trans&long
Year 5	e + Au	10×100	0.5	N/A
Year 5	$e + {}^3 He$	10×166	4	trans& long

- 0(10%) of YR projection data
- Early HI data
- top energy in Year 4
- Cross-section measurements ((n)PDF, (n)FFs, are not luminosity hungry but need good understanding of detector
- BSAs a good start but kinematically suppressed
- Also consider asymmetries in species, final state, charge..

BSAs and Lambdas with early data

Transverse Single Spin Asymmetries at $10 f b^{-1}$

- Uncertainties \ll then expected asymmetries
- Insights into TMD framework

Ecce projections for Sivers asymmetries (NIMA 1049 (2023) 168017)

(nFF)

- Plots by P. Zurita with $10/1 f b^{-1}$ for p/A
- Larger impact on nFFs, remaining questions with interpolation to intermediate A
- Beyond impact on individual FF set, need to probe consistency and compatibility with other datasets

Unpolarized TMDs

- MAP analysis (Bacchetta at ePIC collaboration meeting),
- Simulated data by G. Matousek (Duke)

x = 0.1

- · Significant impact, even with limited data
- Absolute cross-sections will be challenging in the beginning
- Nuclear PDFs/FF can also be measured as ratios to p/d

Impact of $1fb^{-1}$ DIS on nTuJu21 nPDFs (P. Zurita) SIDIS Impact? $(Q^2 = 10 \text{ GeV}^2)$

∆fp/Au |fp/Au

Di-hadrons to access saturation

• Signals in di-hadron correlation and broadening large \rightarrow First hint with limited datasets? (projections here for 10 fb^{-1})

Summary & Conclusion

- SIDIS measurements are central to the EIC physics program
- Early data has impact on (n)FFs, PDFs, potentially BSAs and more
- Projected reduction in uncertainties might not adequately reflect impact → Early EIC data will test our understanding of SIDIS

- Early analysis will be challenged by systematics/detector understanding
 - Luminosity non-hungry total cross-sections/multiplicities
 - -Look for measurements where systematics cancel, e.g. ratios (p/d, p/A, n/d (tagged/untagged), $\pi/K...$

Backup

Validations of Theory Framework

- TMD extraction is non-trivial
- Higher Twist Contributions
- Overlap of regions that are not captured by factorized TMD picture
- VM Meson decays
- Radiative corrections
- Evolution (CS Kernel)

→EIC will be critical test of our understanding (high lumi, leverarm in kinematics to disentangle various contributions)

 $\label{eq:Expect corrections in powers of δ \sim PhT/z/Q$ Plots from A. Bacchetta's talk at ePIC Collaboration meeting$

Access to TMDs: Kinematic factors

		Polarization	Depolarization
Twist 2	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiEE G [⊥]	LU	C/A
	Thence \mathbf{U}_1	UL	1
Twist 3	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

Notation from *PRD*90 (2014) 11, 114027,

Statistical uncertainty scaling factor for 18x275

Slide from C. Dilks

Depolarization Factors

		Polarization	Depolarization
Twist 2	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFF C [⊥]	LU	C/A
		UL	1
<u>Twist 3</u>	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

Suppressed at EIC

From PRD 110 (2024) 11, 114019

Unpolarized PDFs

Higher Twist PDFs

Beyond the parton picture

- Higher Twist Contributions
- Overlap of regions that are not captured by factorized TMD picture
- VM Meson decays
- Radiative corrections
- Assumption of suppressed long photon contributions

One persons 'complication' is another person's signal...

→Need high lumi, leverarm in kinematics to disentangle various contributions

*He*³ Double Tagging at the EIC allows clean neutron measurement

- Neutron is to 87% polarized
- Double tagged events thus provide access to polarized neutron beam

 Reconstruction of initial neutron momentum from tagged protons allows reduction of uncertainties from nuclear corrections

Friščić, I, Nguyen, D, Pybus, JR, Jentsch et al ³¹

Example: transversity extraction from Jlab and the EIC

Phys.Lett.B 816 (2021) 136255

What makes the EIC era?

Luminosity + DIS Kinematics = Precision tests of QCD, 3D structure of the nucleon

Momentum structure in the parton model parametrized by TMDs (spin $\frac{1}{2}$)

 In addition to the spin-spin correlations can have spin momentum correlations!

Kinematic comparisons

Lambda feed-down composition vs JLab20

- Possible to unfold at the EIC (not so much at Jlab)
- ML methods might help

Study by M. McEneaney(Duke) JLab22 similar

The TMD factorization formula receives corrections which enter in terms of powers of $\delta \sim PhT / z/Q$.

 $\frac{d\sigma^{\text{SIDIS}}}{dx_B dQ^2 d^2 \mathbf{P}_{h_T}} \propto x \sum_i e_i^2 \int d^2 \mathbf{p}_T \, d^2 \mathbf{k}_T \, \delta^{(2)}(\mathbf{p}_T - \mathbf{k}_T - \mathbf{P}_{h_T}/z) \, \omega_i(\mathbf{p}_T, \mathbf{k}_T) f_i(x, p_T^2) D_{h/i}(z, k_T^2) \equiv \mathcal{C}\left[\omega f D\right] \,,$

Order of magnitude in luminosity depending on \sqrt{s} (beware of projections with fixed $\int L$)

Wide Coverage

