

Office of Science

Synergies between the UPC and EIC program

Daniel Tapia Takaki

POETIC

Miami, Florida

February 25, 2025

Ultra peripheral collisions (UPC)

POETIC 2025

Gluon saturation matters

At high energies, or for heavy nuclei at lower energies, gluon saturation is predicted

- Non-linear QCD evolution equations introduced, but how is gluon saturation triggered?
- Experimental observables needed to map out the transition between the dilute and saturation regimes. The onset of saturation
- Can we determine experimentally the saturation scale (Q_S)?
- Is there a state of matter formed by gluon saturated matter with universal properties?

Nuclear shadowing experimentally confirmed, but not fully understood

1.5 $\tau_{\text{DIS}}(\text{nucleus})/\sigma_{\text{DIS}}(\text{nucleon})$ 1.0 0.6 0.2

x

- Experimental observation that parton distributions are different for protons and nuclei
- What's the mechanism responsible for shadowing? How is gluon saturation related?
 - The knowledge of the initial state of nuclei also needed for understanding the QGP evolution

Experimental program

- The <u>Electron-Ion Collider</u> will be a dedicated QCD machine with the precision and control capabilities for studying gluon saturation and shadowing in a systematic way like never before.
- The <u>LHC</u> explores the high energy domain for both hadronic and photon-induced reactions

The LHC is the Large Photon Collider

 <u>Ultra Peripheral Collisions (UPC)</u> can explore a wide range of energies using almost real photons

• <u>UPCs at the LHC probe the hadronic structure over</u> broad and unique Bjoren x region, yet the precision not compatible to DIS machines like the EIC $x = M_V/\gamma m_p \exp(\pm,y)$ Interactions mediated by the EM interactions

Equivalent photon flux

Vector meson (VM) photoproduction in UPCs

- As in DIS, several reactions are possible in UPCs:
 - -Exclusive photoproduction
 - -Semi-exclusive photoproduction
 - -Inclusive photoproduction

- By studying various VMs, it is possible to study the Q² dependence
- In the dipole approach, the light VMs (φ, ρ⁰) are more sensitive to saturation because of the larger dipole, but pQCD methods not applicable

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Only UPC asymmetric systems (p-Pb) analyses provide <u>a model</u> independent way of the energy dependence of $\sigma(\gamma p)$

Exclusive J/ ψ in UPC p-Pb (2023)

Phys. Rev. D 108 (2023) 11, 112004

- No change in the behavior observed between HERA and LHC energies
- The highest energy point measured in a modelindependent way is only up to 700 GeV in UPC p-Pb by ALICE

Projections for exclusive J/ψ off protons

Power-law behavior (STARlight)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

FoCal measurement would be sufficient to observe a deviation from a power law behavior, if exists

Broken power-law behavior (NLO BFKL)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

Projections for exclusive $\psi(2S)$ and J/ ψ cross section ratio in γp

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

- Different wave functions and dipole sizes evolution result in great sensitivity to non-linear QCD effects
- No sensitivity at HERA, but expected at the LHC
- Projections here based on STARlight

Coherent J/ψ in UPC Pb-Pb

- Confirmation of nuclear shadowing with Run 2 data
- No model can describe the rapidity dependence

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Mid-rapidity x ~10⁻³

Forward rapidity 95% at $x \sim 10^{-2}$ 5% at $x \sim 10^{-5}$

Nuclear suppression factor for UPC J/ ψ : Comparing γ Pb to γ p

V. Guzey et al. PLB 726 (2013)

An experimental definition, which can be linked to PDFs at LO

$$S_{Pb}(x) = \sqrt{\frac{\sigma_{\gamma A \to J/\psi A}(W_{\gamma p})}{\sigma_{\gamma A \to J/\psi A}^{\mathrm{IA}}(W_{\gamma p})}} = \kappa_{A/N} \frac{xg_A(x,\mu^2)}{Axg_N(x,\mu^2)}$$

Run 1 data from ALICE was the first at indicating nuclear gluon shadowing at $x \sim 10^{-3}$

Large scale NLO uncertainties should cancel in the $S_{Pb}(x)$ ratio

ALICE results at y=0 have no ambiguity on the photon energy

POETIC 2025

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Analyses of UPC asymmetric systems (p-Pb) provide <u>a model independent way</u> to study the energy dependence of $\sigma(\gamma p)$

Impact parameter flux profile

Broz, Contreras and DTT, CPC 235 (2020) 107181

Neutron-dependence of coherent J/ ψ in UPC Pb-Pb

The photon flux (n) depends on the impact parameter

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0n0n)}{dy} + 2\frac{d\sigma(0nXn)}{dy} + \frac{d\sigma(XnXn)}{dy}$$

Solving the linear equations resolves the two-fold ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

Energy dependence of coherent J/ ψ in γ Pb – ALICE Run 1 and Run 2 data

JHEP 10 (2023) 119

Confirmed Run 1 results. At low x, both shadowing and saturation models describe the data

Energy dependence across the whole range not described by models

In a single experiment exploring (20,800) GeV in $W_{\gamma Pb}$ and x from 10^{-2} to 10^{-5}

Nuclear suppression factor - ALICE Run 1 and Run 2 data

<u>JHEP 10 (2023) 119</u>

At low x, both shadowing and saturation models describe the data

Confirmation that peripheral hadronic events can be used to extract the energy dependence. Already explored down to x = 4.4×10⁻⁵ using Run 1 data

With the neutrondependent analysis using Run 2 data, down to x =1.1×10⁻⁵, Run 2

Transverse profile of the target

UPCs can probe the transverse profile of the target!

Appearance and location of diffractive dips can be signatures of gluon saturation

Exclusive VM at the acceptance

S. Klein and M. Lomnitz Phys. Rev. C **99**, 105203 (2019)

Flipped rapidity convention used

POETIC 2025

POETIC 2025

Daniel Tapia Takaki

Electron Ion Collider

The Next QCD Frontier

Inderstanding the glu

Coherent J/ ψ selection at ePIC, vetoing incoherent production

W. Chang *et al.*, Phys. Rev. D **104**, 114030 (2021)

- (a) Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$).
- (b) Veto.2: veto.1 and no neutron in ZDC.
- (c) Veto.3: veto.2 and no proton in RP.
- (d) Veto.4: veto.3 and no proton in OMDs.
- (e) Veto.5: veto.4 and no proton in B0.
- (f) Veto.6: veto.5 and no photon in B0.
- (g) Veto.7: veto.6 and no photon with E > 50 MeV in ZDC.

Forward instrumentation and modeling crucial

Coherent $\phi(1020)$ electroproduction

Sensitivity to gluon saturation

FF instrumentation and modeling crucial

H. Mäntysaari & B. Schenke

Examples of proton density profiles at $x \sim 10^{-3}$

Dissociative J/ ψ in UPC

See talk by A. Ridzikova at DIS'24 Figures from her

Gluon saturation and dissociative J/ ψ in UPC

See talk by A. Ridzikova at DIS'24 Her figures

In the hot spot model, the increase of large hot spots within the proton reaches a point of significant overlap, and the resulting uniformity reduces both the variance and the dissociative cross section

Phys. Lett. B 766 (2017) 186-191

Transverse profile of the target

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

Signature of gluon saturation

Study of ρ^0 is very promising since diffractive dips expected at lower t values $Pb + p \rightarrow Pb + J/\psi$ IP-Sa bCGC bCGC Linear $s^{1/2} = 8.16 \text{ TeV}$ Y = 02.5 3.5 0.51.5 2 3 0 $|t| [\text{GeV}^2]$

t-distribution: onset of gluon saturation

t-dependence measurement of UPC ρ^0

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

Similar studies could also be done for Pb targets, but energies are lower and also challenging in UPCs

176 Gev

Daniel Tapia Takaki

t-dependence of coherent and incoherent J/ ψ in UPC Pb-Pb

First measurement of the |t|-dependence of incoherent J/ψ photonuclear productionPhys.Rev.Lett. 132 (2024) 16, 162302Probing for gluonic "hot spots" in Pb

POETIC 2025

Daniel Tapia Takaki

t-dependence of incoherent J/ ψ in UPC Pb-Pb

Editors' Suggestion

First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production

S. Acharya *et al.* (ALICE Collaboration) Phys. Rev. Lett. **132**, 162302 (2024) – Published 19 April 2024

The first experimental measurement of the incoherent photonuclear production of J/ψ in ultraperipheral heavy-ion collisions is better explained by the presence of subnuclear quantum fluctuations of the gluon field. Show Abstract +

Gluonic hot spots

HOTSPOT SNAPSHOTS In pursuit of gluon saturation

J. Cepila et al. 2024 Phys. Lett. B 852 138613

Hotspot snapshots Simulations of the transverse density of gluons in lead nuclei at Bjorken x of 10^{-2} (left) and 10^{-6} (right). The distributions are 10 times broader than for protons and span almost 15 fm. The number of gluonic hotspots increases from 1,400 to 12,000 as x drops by a factor of 10,000, from left to right.

POETIC 2025

Daniel Tapia Takaki

As expected, no additional component expected at lower energies with limited luminosities. At the EIC the high high luminosities is very promising

A femtometer scale double-slit experiment

STAR has an active program here.

In ALICE, first measurement in terms of impact parameter dependence

Diffractive dijets

H. Mantysaari, N. Mueller, B. Schenke Phys. Rev. D 99 (7) (2019) 074004 Original ideal the effect was a percent level. Several theory groups studied it

Daniel Tapia Takaki

Azimuthal correlations of exclusive dijets

Another example of synergies with EIC, testing and strengthening the science opportunities

CMS Collaboration Phys. Rev. Lett. 131 (2023) 5, 051901

Several new theory ideas for the EIC resulted from this work

Summary

- The UPC program and the EIC have strong synergies, offering complementary insights into fundamental physics.
- While UPCs probe the energy frontier, the EIC focuses on the luminosity and precision frontier.
- Existing synergies between the two programs demonstrate mutual benefits, with improved modeling, playing a crucial role in refining high-luminosity EIC measurements.
- These connections are also valuable for shaping discussions on the early science goals of the EIC.
- Additionally, a "multi-messenger program" may be necessary to fully explore certain observables.

Thanks!

Run 3 data analysis: Inelastic γ +Pb -> X events

Experimental signatures for inelastic photonuclear interactions:

1) There is a rapidity gap on the side of the photonemitting nucleus \rightarrow main experimental signature

2) The photon energy << beam energy \rightarrow particle production is shifted in rapidity to the side of the target nucleus

Phys. Rev C 66 (2002) 044906 <u>Total cross sections in Pb+Pb @ $\sqrt{s} = 5.5$ TeV</u> $\sigma(Pb+Pb \rightarrow Pb+ccbar+X) = 2b$ $\sigma(Pb+Pb \rightarrow Pb + bbbar +X) = 830 \ \mu b$

Nucleus breaks up Multiple neutrons

<u>Direct production:</u> a bare photon interacts with a parton in the target

<u>Resolved production:</u> the photon fluctuates to vector meson which interacts inelastically with the target

CERN LHC and ALICE timeline

FoCal and ITS3

Daniel Tapia Takaki

Nuclear suppression factor for peripheral (not UPC) J/ ψ

J.G. Contreras, Phys. Rev.C 96 (2017) 1, 015203

Run 1 data from ALICE observed Coherent-like J/ ψ from peripheral hadronic PbPb events. Process later confirmed by STAR

The photon flux depends on the impact parameter, these peripheral J/ψ explore γP energies beyond coherent J/ψ at the same y interval at the same cms energy

Sensitivity to $x \sim 10^{-5}$

POETIC 2025

Daniel Tapia Takaki