Extracting the Pion Off-Shell Electromagnetic Form Factors Physics Opportunities at an Electron-Ion Collider POETIC XI 24-28 Feb 2025 Florida International University, Miami, USA Modesto Maidique Campus

J. Pacheco B. C. de Melo

Laboratório de Física Téorica e Computacional-LFTC, UNICSUL / UNICID (Brazil) Colaborators:

J. Leão (Brazil), H. Choi (Korea) , T. Frederico (Brazil), C. -R. Ji (USA)

J. Pacheco B. C. de Melo (Laboratório de

Some references (off-shell)

 V. Shastry, W. Broniowski and E. Arriola Phys. Rev. D 108, 114024 (2023) • W. Broniowski, V. Shastry and E. Ruiz Arriola, Phys. Lett. B840 (2023) 137872 • R. J. Perry, A. Kızılersü and A. W. Thomas Phys. Lett. B 807, 135581 (2020) • Si-Xue Qin, Chen Chen, Cédric Mezrag and Craig D. Roberts. Physical Review C97, 015203 (2018). • R. J. Perry, A. Kızılersü, and A. W. Thomas, Phys. Rev. C 100, 025206 (2019) T. MART Modern Physics Letters A Vol. 23, No. 39 (2008) 3317. • T. E. Rudy, H. W. Fearing and S. Scherer, Phys. Rev. C 50, 447 (1994). C. Weiss Phys. Lett. B (1994) 7.

<ロ> <部> < 部> < き> < き> < き</p>

• Ligh-Front is the Ideal Framework to Describe Hadronic Bound States

э

イロン イヨン イヨン -

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System

3

イロト イポト イヨト イヨト

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial
- After Integrate in k⁻: Bethe-Salpeter Amplitude (Wave Function)

イロト 不得 とくほと くほとう ほ

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial
- After Integrate in k⁻: Bethe-Salpeter Amplitude (Wave Function)
- LF Lorentz Invariant Hamiltonian: $P^2 = P^+P^- P_{\perp}^2$

イロト 不得 トイヨト イヨト 二日

• Light-Front Coordinates

Four-Vector
$$\implies x^{\mu} = (x^0, x^1, x^2, x^3) = (x^+, x^-, x_{\perp})$$

$$x^+ = t + z$$
 $x^+ = x^0 + x^3 \implies$ Time
 $x^- = t - z$ $x^- = x^0 - x^3 \implies$ Position

Scalar product

$$x \cdot y = x^{\mu}y_{\mu} = x^{+}y_{+} + x^{-}y_{-} + x^{1}y_{1} + x^{2}y_{2} = \frac{x^{+}y^{-} + x^{-}y^{+}}{2} - \vec{x}_{\perp}\vec{y}_{\perp}$$

Metric Tensor:

$$g^{\mu\nu} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ and } g_{\mu\nu} = \begin{pmatrix} 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

э

イロン イヨン イヨン ・ ヨン

• Hadronic Form factors: Important Sources Informations for Hadrons Strucuture

æ

イロン イヨン イヨン -

- Hadronic Form factors: Important Sources Informations for Hadrons Strucuture
- Off-Shell Effects: Electroproduction $\Rightarrow {}^{1}H(e, e'\pi^{+})n$

イロト 不得 とくほと くほとう ほ

- Hadronic Form factors: Important Sources Informations for Hadrons Strucuture
- Off-Shell Effects: Electroproduction $\Rightarrow {}^{1}H(e, e'\pi^{+})n$
- Cross section's: $\sigma_L, \sigma_T, \sigma_{LL}, \sigma_{TT}$

- Hadronic Form factors: Important Sources Informations for Hadrons Strucuture
- Off-Shell Effects: Electroproduction $\Rightarrow {}^{1}H(e, e'\pi^{+})n$
- Cross section's: $\sigma_L, \sigma_T, \sigma_{LL}, \sigma_{TT}$
- Pion Electromagnetic Form Factors: $F_1(Q^2, t)$ and $F_2(Q^2, t)$

- Hadronic Form factors: Important Sources Informations for Hadrons Strucuture
- Off-Shell Effects: Electroproduction $\Rightarrow {}^{1}H(e, e'\pi^{+})n$
- Cross section's: $\sigma_L, \sigma_T, \sigma_{LL}, \sigma_{TT}$
- Pion Electromagnetic Form Factors: $F_1(Q^2, t)$ and $F_2(Q^2, t)$
 - ⇒ Extracted from Cross sections

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Data from Experiments: Electroproduction

Electroproduction: Diagrammatic representation of the pion pole contribution to $p(e, e')\pi^+ n$ process The black blob represents the half-on-mass shell photo absorption amplitude $\langle \Box \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle$

J. Pacheco B. C. de Melo (Laboratório de

6 / 53

э

Electromagnetic Form Factors

k

Feynman triangular diagram representing the matrix element of the pion EM current within the Mandelstam framework

Electromagnetic Form Factors

 \Longrightarrow Form factors are essential for our understanding of internal hadron structure and the dynamics

- On-shell Case: \implies $F_1(Q^2, t)$
- Off-shell Case:
- \implies Two Electromagnetic Form Factors: $F_1(Q^2, t)$ and $F_2(Q^2, t)$
- Structure:

$$< p'|\mathcal{O}|P> = (p'+p)^{\mu}F_1(Q^2,t) + (p'-p)^{\mu}F_2(Q^2,t)$$

イロト 不得 とくほと くほとう ほ

• Most General Structure

$$\Gamma_{\mu} = e[P^{\mu} G_1(q^2, p^2, p') + q^{\mu} G_2(q^2, p^2, p')]$$

- $P^{\mu} = (p'^{\mu} + p^{\mu})$, and, $q^{u} = (p'^{\mu} p^{\mu})$
- \implies $G_1 = F_1(p^2, p'^2, q^2)$ and $G_2 = F_2(p^2, p'^2, q^2)$
- Ward-Takahashi Identity-WTI

$$q^{\mu}\Gamma_{\mu} = e\Delta_0^{-1}[\Delta(p) - \Delta(p')]\Delta_0^{-1}(p),$$

where, $\Delta_0(p) = \frac{1}{p^2 - m^2 + i\epsilon}$, and, $\Delta(p) = \frac{1}{p^2 - m^2 - \Pi(p^2) + i\epsilon}$

• Assuming (Standard renormalization)

$$\implies \{ \Pi(m_{\pi}^2) = 0$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

• From the WTI , we have,

$$\begin{split} &(p'^2-p^2)G_1(q^2,p^2,p'^2)+q^2G_2(q^2,p^2,p'^2)\\ &=\Delta^{-1}(p')-\Delta^{-1}(p) \end{split}$$

• For the reaction ${}^{1}\mathrm{H}(e,e'\pi^{+})n$

æ

イロン イヨン イヨン -

• From the WTI , we have,

$$\begin{split} (p'^2-p^2)G_1(q^2,p^2,p'^2) + q^2G_2(q^2,p^2,p'^2) \\ &= \Delta^{-1}(p') - \Delta^{-1}(p) \end{split}$$

- For the reaction ${}^{1}\mathrm{H}(e,e'\pi^{+})n$
- * The Final state pion on-mass-shell $\implies p'^2 = m_\pi^2$, with $\Delta^{-1}(p') = 0$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ののの

• From the WTI , we have,

$$\begin{split} (p'^2-p^2)G_1(q^2,p^2,p'^2) + q^2G_2(q^2,p^2,p'^2) \\ &= \Delta^{-1}(p') - \Delta^{-1}(p) \end{split}$$

- For the reaction ${}^{1}\mathrm{H}(e,e'\pi^{+})n$
- * The Final state pion on-mass-shell $\implies p'^2 = m_\pi^2$, with $\Delta^{-1}(p') = 0$
- Real photon with $q^2 = 0$

$$(p^2 - m_\pi^2) G_1(0, p^2, m_\pi^2) = \Delta^{-1}(p)$$

• And,

$$G_2(q^2, p^2, m_\pi^2) = \frac{(m_\pi^2 - p^2)}{q^2} \left[G_1(0, p^2, m_\pi^2) - G_1(q^2, p^2, m_\pi^2) \right]$$

J. Pacheco B. C. de Melo (Laboratório de

3

$F_2(Q^2, t)$ Off-Shell electromagnetic form factor

- Pion initial state off-mass shell $(p^2 = t)$
- Pion Final state on-mass shell $(p'^2 = m_{\pi}^2)$ Then,

$$F_2(Q^2,t) = rac{t-m_\pi^2}{Q^2} \left[F_1(0,t) - F_1(Q^2,t)
ight]$$

- With $F_i(Q^2, t) \equiv G_i(q^2, t, m_{\pi}^2)$ (i = 1, 2)
- $Q^2(=-q^2)$ is the four-momentum transfer in the spacelike region.
- Also $G_2(q^2 = -Q^2, m_\pi^2, m_\pi^2) = F_2(Q^2, m_\pi^2) = 0$
- For both the initial and final mesons are on-shell
- Implicate \implies Conservation of the electromagnetic current

・ロト ・同ト ・ヨト ・ヨー うのの

Pion-Photon vertex

• For half on-shell $(p'^2 = m_{\pi}^2)$ and half off-shell $(p^2 = t)$:

$$egin{aligned} & \Gamma_{\mu}(p',p)|_{p'^2=m_{\pi}^2,p^2=t} = e iggl[(p'+p)^{\mu} \, F_1(Q^2,t) \ & + (p'-p)^{\mu} rac{(t-m_{\pi}^2)}{Q^2} \left(F_1(0,t) - F_1(Q^2,t)
ight) iggr] \end{aligned}$$

• Pion charge normalization: $F_1(Q^2 = 0, m_{\pi}^2) = G_1(0, m_{\pi}^2, m_{\pi}^2) = 1$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- In the electroproduction process, directly measuring the form factor $F_2(Q^2, t)$
- \implies Is impractical due to the transversality of the electron current
- But $F_2(Q^2, t)$ tends to zero as $t \to m_\pi^2$
- However:

イロト 不得 とくほと くほとう ほ

• In the electroproduction process, directly measuring the form factor $F_2(Q^2, t)$

 \implies Is impractical due to the transversality of the electron current

- But $F_2(Q^2, t)$ tends to zero as $t \to m_\pi^2$
- However:

 \implies The ratio of $F_2(Q^2, t)$ to $t - m_\pi^2$ remains nonzero when t approaches m_π^2

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

New electromagnetic form factor

• New form factor $g(Q^2, t)$, defined

$$g(Q^2,t)\equiv rac{F_2(Q^2,t)}{t-m_\pi^2}=rac{1}{Q^2}[F_1(0,t)-F_1(Q^2,t)]$$

- Ref. H.-M. Choi, T. Frederico, C.-R. Ji, and J. P. B. C. de Melo, Pion off-shell electromagnetic form factors: Data extraction and model analysis, Phys. Rev. D 100, 116020 (2019).
- H.-M. Choi, C.-R. Ji, T. Frederico, and J. P. B. C. de Melo, 3D imaging of the pion off-shell electromagnetic form factors. Proc. Sci. LC2019 (2020) 035.
- J. Leão, J. de Melo, T. Frederico, H.M. Choi and C. -R. Ji Off-shell pion properties: Electromagnetic form factors and light-front wave functions, Phys.Rev.D 110 (2024) 7

Master equation off-shell form factor sum rule**

$$F_1(Q^2,t) - F_1(0,t) + Q^2g(Q^2,t) = 0$$

• Derivative with respect to $Q^2 \implies$ evolution equation:

$$rac{\partial}{\partial Q^2}F_1\left(Q^2,t
ight)+g\left(Q^2,t
ight)+Q^2rac{\partial g\left(Q^2,t
ight)}{\partial Q^2}=0.$$

** Master Equation: Consequence of Ward-Takahashi identity

イロン 不良 とくほう イロン 一日

In on-mass shell limit, $g(Q^2 = 0, m_{\pi}^2)$

$$\implies t = m_\pi^2$$
 and at $Q^2 = 0$

• g(Q, t) is connected with charge radius for on-shell pion EFF

$$g(Q^2 = 0, m_{\pi}^2) = -\frac{\partial}{\partial Q^2} F_1(Q^2 = 0, m_{\pi}^2) = \frac{1}{6} \langle r_{\pi}^2 \rangle$$

• On-mass shell solution for $g(Q^2, m_{\pi}^2)$ is given by

$$g(Q^2, m_\pi^2) = \frac{1}{6} \langle r_\pi^2 \rangle + \alpha Q^2 + \cdots$$

イロト 不得 とくほと くほとう ほ

- The master equation allows extract both $F_1(Q^2, t)$ and $F_2(Q^2, t)$
- \implies Electroproduction process cannot measure directly $F_2(Q, t)$!!!

э

- The master equation allows extract both $F_1(Q^2, t)$ and $F_2(Q^2, t)$
- \implies Electroproduction process cannot measure directly $F_2(Q, t)$!!!
- $g(Q^2, t)$ <u>Is the new observable form factor</u>

- 4 同 1 日 1 4 日 1 日 - 今々で

Cross-section

• Figure from ref. H. P. Blok et al.; Phys.Rev.C 78 (2008) 045202

æ

・ロト ・回ト ・ヨト ・ヨト

• Exclusive reaction: ${}^{1}\mathrm{H}(e, e'\pi^{+}) n$

 \implies Longitudinal (L), Transverse (T), and also interference terms (LT and TT)

$$(2\pi)\frac{d^{2}\sigma}{dtd\phi} = \frac{d\sigma_{\rm T}}{dt} + \epsilon \frac{d\sigma_{\rm L}}{dt} + \sqrt{2\epsilon(\epsilon+1)}\frac{d\sigma_{\rm LT}}{dt}\cos\phi + \epsilon \frac{d\sigma_{\rm TT}}{dt}\cos 2\phi$$

$$\epsilon = \left(1 + rac{2|\mathsf{q}|^2}{Q^2} an^2 rac{ heta_\mathsf{e}}{2}
ight)^{-1}$$

- ϵ Polarization of the virtual photon
- q is its three momentum
- θ_e is the angle between initial and final electron momentum

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sullivan process: Chew-Low formulation

For small t for the pion pole contribuition

$$N\frac{d\sigma_{\rm L}}{dt} = 4\hbar c \left(eG_{\pi NN}\right)^2 \frac{-tQ^2}{\left(t-m_{\pi}^2\right)^2} F_{\pi}^2\left(Q^2\right),$$

• Flux fator for σ_L :

$$N = 32\pi \left(W^2 - m_p^2\right) \sqrt{\left(W^2 - m_p^2\right)^2 + Q^4 + 2Q^2 \left(W^2 + m_p^2\right)}.$$

• Invariant mass (virtual photon-nucleon system):

$$W=\sqrt{M_{
m p}^2+2M_{
m p}\omega-Q^2}$$

• *M_p* proton mass

э

• Pion Nucleon form factor (monopole):

$$\mathcal{G}_{\pi \, NN}(t) = \mathcal{G}_{\pi \, NN}\left(m_\pi^2
ight) \left(rac{\Lambda_\pi^2 - m_\pi^2}{\Lambda_\pi^2 - t}
ight),$$

$$G_{\pi NN}\left(m_{\pi}^{2}
ight) = 13.4$$
 and $\Lambda_{\pi} = 0.80~{
m GeV}$

• For extraction of F_{π} from the Jefferson Lab^{*}

* Ref. G. M. Huber et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045203 (2008)

Obs.: The value of Λ_{π} is agree with the deuteron proprieties See T. E. O. Ericson, B. Loiseau, and A. W. Thomas Phys. Rev. C 66, 014005 (2002)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Models

• Previus work: Covariant Model*

$$\Gamma^{\rm CON}_{\pi}(k,p) = g_{\pi \bar{q} \bar{q}},$$

- $\implies g_{\pi q \bar{q}}$ pion-quark coupling constant
- pointlike vertices
- fermion-loop was regulated by dimensional regularization
- UV divergence eliminated redefining the renormalized form factor

$$\mathcal{F}_{1}^{\mathrm{ren}}\left(\mathcal{Q}^{2},t
ight)=1+\left(\mathcal{F}_{1}\left(\mathcal{Q}^{2},t
ight)-\mathcal{F}_{1}\left(0,m_{\pi}^{2}
ight)
ight)$$

* **Ref.**; Ho-Meoyng Choi, T. Frederico, Chueng-Ryong Ji and J.P.B.C. de Melo, Phys.Rev.D 100 (2019) 11, 116020

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• Pion microscospic current: Mandelstam amplitude for the photoabsorption

- Here two constraints
- i) Covariance

э

イロト イポト イヨト イヨト

- Pion microscospic current: Mandelstam amplitude for the photoabsorption
- Here two constraints
- i) Covariance
- ii) Current conservation (on-mass shell, initial and final pion)

э

イロト イポト イヨト イヨト

Effective Lagrangian

Effective Lagrangian with pion and quark degrees of freedom

$$\mathcal{L} = -\imath rac{m}{f_\pi} ec{\pi} \cdot ar{q} \gamma_5 ec{ au} q,$$

- \bullet Coupling of the constituent quark / pseudoscalar isovector pion field / ${\rm SU}(2)$ flavor symmetry
- f_{π} is the pion decay constant and m is the constituent quark mass

イロト 不得 とくほと くほとう ほ

• Mandelstam formula \implies Pion-photon absorption amplitude

$$\begin{split} \Gamma^{\mu}\left(p',p\right) &= -2ie\frac{m^2}{f_{\pi}^2}N_c\int\frac{d^4k}{(2\pi)^4}\operatorname{Tr}\left[S(k)\gamma^5S\left(k-p'\right)\right.\\ &\times\gamma^{\mu}S(k-p)\gamma^5\left]\Gamma_{\pi}\left(k,p'\right)\Gamma_{\pi}(k,p), \end{split}$$

 $\begin{cases} S(p) \text{ is constituent quark propagator} \\ N_c = 3 \text{ is the number of colors} \\ q = (p' - p) \text{ the momentum transfer} \\ k \text{ the spectator quark momentum} \end{cases}$

• Frame

• $\begin{cases} Offshell : initial pion: <math>p^2 = t < 0 \\ On - shell : final pion p'^2 = m_{\pi}^2 \end{cases}$

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

• Frame

- { Offshell : initial pion: $p^2 = t < 0$ On - shell : final pion $p'^2 = m_{\pi}^2$
- \implies The equation above: Satisfy current conservation:

$$q_{\mu}\Gamma^{\mu}\left(p',p\right)\big|_{p^{2}=p'^{2}=m_{\pi}^{2}}=0$$

If both pion in on-shell

イロト 不得 とくほと くほとう ほ

• \implies $q^+ = q^0 + q^3 = 0$ (with LF energy $p^- = p^0 - p^3$) • \implies Momentum (p^+, p_\perp) satisfying

$$p^- = rac{p_\perp^2 + t}{p^+}, \quad ext{Off-shell}$$

• $\vec{p}'_{\perp} = \vec{q}_{\perp}/2$, pion initial off-shell pion

$$p^{\prime -}=rac{p^{\prime 2}_{\perp}+m^2_{\pi}}{p^+},~~$$
 On-shell

• $\vec{p}_{\perp}' = \vec{q}_{\perp}/2$, final state on-mass shell pion

- Final state on-shell pion momentum: $p'^+ = p'^-$
- Defines the kinematics, for t < 0 and $t = m_{\pi}^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つぬの

Bethe-Salpeter amplitude

• Symmetric (SYM) vertex to smear the $q\bar{q}$ bound-state vertex

$$\Gamma^{(\mathrm{SYM})}_{\pi}(k,p) = N\left(rac{1}{k^2 - m_R^2 + i\epsilon} + rac{1}{(p-k)^2 - m_R^2 + i\epsilon}
ight).$$

- \implies Pauli-Villars regularization mass m_R plays the role of a momentum cutoff
- \implies Fixed by fitting the pion decay constant (Exp.) see PDG)
- Model for the BS amplitude

$$\Psi_i(k,p) = \frac{m}{f_{\pi}} S(k) \gamma^5 \Gamma(k,p) \tau_i S(k-p).$$

de Melo, Naus, and Frederico, Phys. Rev. C 59, 2278 (1999)
de Melo, Frederico, Pace, and Salmé, Nucl. Phys. A707, 399 (2002); ibid., Braz. J. Phys. 33. 301 (2003)

Wave function

• Wave function // LF projection SYM vertex

$$\Psi(x, k_{\perp}, t = p^{+}p^{-} - p_{\perp}^{2})$$

$$= \frac{\mathcal{N}}{t - M_{0}^{2}(m^{2}, m^{2})} \left[\frac{1}{x(t - M_{0}^{2}(m_{R}^{2}, m^{2}))} + \frac{1}{(1 - x)(t - M_{0}^{2}(m^{2}, m_{R}^{2}))} \right]$$

$$M_{0}^{2}(m_{a}^{2}, m_{b}^{2}) = \frac{k_{\perp}^{2} + m_{a}^{2}}{x} + \frac{(p - k)_{\perp}^{2} + m_{b}^{2}}{1 - x}$$

$$M_{0}^{2}(m_{a}^{2}, m_{b}^{2}) = \frac{k_{\perp}^{2} + m_{a}^{2}}{x} + \frac{(p - k)_{\perp}^{2} + m_{b}^{2}}{1 - x}$$

• $\begin{cases} m_a \text{ and } m_b \ // \text{ quark m} \\ m_R \ // \text{regulator mass} \\ x = \frac{k^+}{p^+} \end{cases}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wave function Normalização

- Normalization constant $\mathcal{N} = N\sqrt{N_c} \frac{m}{f_-}$
- Number of colors $N_c = 3$, f_{π} Weak pion decay constant

• Wave Function: $\begin{cases} \text{On-shell for } t = p^+p^- - p_{\perp}^2 = m_{\pi}^2 \\ \text{Off-shell otherwise} \end{cases}$

$$\int_0^1 dx \int \frac{d^2 k_{\perp}}{16\pi^3} |\Psi(x, k_{\perp})|^2 = 1.$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• TMD - Transverse Momentun Distribution

$$f(x,k_{\perp}) = rac{1}{16\pi^3} \left|\Psi(x,k_{\perp})\right|^2$$

• PDF - Parton Distribution Function

$$f(x) = \int d^2 k_{\perp} f(x, k_{\perp})$$

• Sum Rule

$$\int dx \int d^2 k_{\perp} f(x, k_{\perp}) = \int dx f(x) = 1$$

イロト 不同 トイヨト イヨト

3

Pion Electromagentic Form Factors

- Off-mass shell EM form factor $F_1\left(Q^2,t
 ight)$
- \implies With the final state on-shell, and $\Gamma^+(p',p)$ for the EM-current

 \implies **Also** $q^+ = 0$

$$F_1\left(Q^2,t
ight)=rac{\Gamma^+\left(p',p
ight)}{2ep^+}.$$

• Electromagnetic form-factor $F_2\left(Q^2,t\right)$

$$F_2(Q^2,t) = rac{t-m_\pi^2}{Q^2} \left[F_1(0,t) - F_1(Q^2,t)
ight],$$

- \bullet As a reminder, the FFactor $g(Q^2,t)$ is obtained by combining F_1 and and F_2
- VIP: Use of γ^+ eliminates the instantaneous terms

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ・ の < @

• Kinematics (on-shell):

$$p^{\mu} = (p_0, \frac{-q\cos\alpha}{2}, 0, \frac{-q\sin\alpha}{2})$$
$$p^{\prime \mu} = (p_0, \frac{q\cos\alpha}{2}, 0, \frac{q\sin\alpha}{2}),$$

where
$$p^0=\sqrt{m_\pi^2+rac{q^2}{4}}.$$

- Transfer momentum: $q^{\mu} = p'^{\mu} p^{\mu} = (0, q \cos \alpha, 0, 0, q \sin \alpha).$
- Light-front coordinates: $(t + z, t z, x, y) = (+, -, \bot)$,

$$p^{\mu} = (p_0 - \frac{q\sin\alpha}{2}, p_0 + \frac{q\sin\alpha}{2}, -\frac{q\cos\alpha}{2})$$
$$p^{\prime \mu} = (p_0 + \frac{q\sin\alpha}{2}, p_0 - \frac{q\sin\alpha}{2}, \frac{q\cos\alpha}{2})$$

Momentum transfer: $q^{\mu} = (q \sin \alpha, -q \sin \alpha, q \cos \alpha).$

J. Pacheco B. C. de Melo (Laboratório de

Results

Pion electromagnetic form factor (on-shell) with $J^{\mu} = J^+$

- Ref. de Melo, Frederico, Pace, Salme, Nucl.Phys. A 707 (2002) 399.
- Yabusaki, Ahmed, Paracha, de Melo and El-Bennich, Phys.Rev.D 92 (2015) 3, 034017.

< ロ > < 同 > < 回 > < 回 >

Model	$\sqrt{\langle r_{\pi}^2 \rangle}$ [fm]	$f_{\pi}[\text{MeV}]$	$g\left(0,m_{\pi}^{2} ight)\left[\mathrm{GeV}^{2} ight]$		
$\Gamma_{\pi}^{(\mathrm{SYM})}$	0.736	92.40	2.32		
$\Gamma_{\pi}^{(\mathrm{CON})}$	$\textbf{0.713} \pm \textbf{0.013}$		2.18 ± 0.08		
Exp. [PDG]	0.672(8)	92.28(7)	1.93(5)		

- Quark masses: $m_u = m_{\bar{d}} = 0.220 \text{ GeV}$
- **Regulator mass:** $m_R = 0.600 \text{ GeV}$
- \implies (fit f_{π} Exp. value)!!

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

• f_{π} , and charge radius r_{π} , for $m_q = 0.22. \text{GeV}$ Different values of the regulator mass m_R The fractional percent deviations are

$$\Delta f_{\pi} = \left| \frac{f_{\pi}^{f_{T}^{\mathrm{SM}} - f_{\pi}^{\mathrm{Exp}}}}{f_{\pi}^{\mathrm{SYM}}} \right| \times 100 \text{ and } \Delta r_{\pi} = \left| \frac{r_{\pi}^{s_{T} \mathrm{YM}} - r_{\pi}^{\mathrm{Exp}}}{r_{\pi}^{\mathrm{STM}}} \right| \times 100$$

$m_R[{ m GeV}]$	$f_{\pi}[\text{MeV}]$	$\Delta f_{\pi}(\%)$	r_{π} [fm]	$\Delta r_{\pi}(\%)$
0.6	92.4	0.1	0.736	8.7
0.7	97.0	4.9	0.695	3.4
0.8	100.9	8.5	0.675	0.4

э

ヘロト ヘ回ト ヘヨト ヘヨト

Off Shell Electromagnetic Form Factors

Q^2	W	-t	$F_1(Q^2, t)$			$F_1(0, t)$	
(GeV^2)	(GeV)	(GeV^2)	Exp.	CON	SYM	CON	SYM
0.526	1.983	0.026	0.502 ± 0.013	0.487	0.4471	0.891	0.8926
0.576	1.956	0.038	0.440 ± 0.010	0.462	0.4200	0.869	0.8685
0.612	1.942	0.050	0.413 ± 0.011	0.443	0.3995	0.849	0.8458
0.631	1.934	0.062	0.371 ± 0.014	0.430	0.3860	0.831	0.8244
0.646	1.929	0.074	0.340 ± 0.022	0.419	0.3744	0.814	0.8041
0.000	1 000	0.007	0.007 0.010	0.405	0.0007	0.070	0.0705
0.660	1.992	0.037	0.397 ± 0.019	0.435	0.3937	0.870	0.8705
0.707	1.901	0.051	0.300 ± 0.017	0.414	0.3717	0.848	0.8440
0.753	1.943	0.065	0.358 ± 0.015	0.394	0.3526	0.827	0.8192
0.781	1.930	0.079	0.324 ± 0.018	0.381	0.3382	0.807	0.7960
0.794	1.926	0.093	0.325 ± 0.022	0.371	0.3289	0.789	0.7742
0.877	1.999	0.060	0.342 ± 0.014	0.366	0.3283	0.834	0.8279
0.945	1.970	0.080	0.327 ± 0.012	0.343	0.3058	0.806	0.7944
1.010	1.943	0.100	0.311 ± 0.012	0.322	0.2868	0.781	0.7638
1.050	1.926	0.120	0.282 ± 0.016	0.307	0.2731	0.758	0.7357
1.067	1.921	0.140	0.233±0.028	0.297	0.2637	0.737	0.7097
1.455	2.001	0.135	0.258 ± 0.010	0.237	0.2227	0.742	0.7160
1.532	1.975	0.165	0.245 ± 0.010	0.219	0.2078	0.714	0.6799
1.610	1.944	0.195	0.222 ± 0.012	0.201	0.1955	0.688	0.6475
1.664	1.924	0.225	0.203 ± 0.013	0.188	0.1860	0.665	0.6182
1.702	1.911	0.255	0.227 ± 0.016	0.177	0.1783	0.644	0.5896
1 416	0.074	0.070	0.070 0.010	0.050	0.0420	0.007	0 7045
1.410	2.274	0.079	0.270 ± 0.010	0.259	0.2430	0.807	0.7945
1.513	2.242	0.112	0.258 ± 0.010	0.235	0.2238	0.767	0.7450
1.593	2.213	0.139	0.251 ± 0.010	0.217	0.2097	0.738	0.7092
1.007	2.187	0.100	0.241 ± 0.012	0.201	0.1970	0.713	0.6769
1.763	2.153	0.215	0.200 ± 0.018	0.179	0.1816	0.672	0.6257

Amendolia et al. (1986) Volmer et al. - JLAB (2001) Horn et al. - JLAB (2006) 1.2 Tadevosyan - JLAB (2007) Baldini et al. - Frascati (2001) Huber et al. -JLAB (2008) Volmer et al. (2001) - TJLAB SYM. Model Horn et al. (2006) - TJLAB 0.3 CON. Model with m = 0.12 GeV Tadevosvan (2007) - TJLAB $F_1(Q^2,m^2)$ CON. Model with m = 0.16 GeV Huber et al. (2008) - TJLAB ____ SYM. Model with m_a = 0.220 [GeV] m_p = 0.600 [GeV] $F_{1}^{f}(Q^{2},m^{2})$ ____ SYM. Model with m_a = 0.220 [GeV] m_p = 0.700 [GeV] SYM. Model with m = 0.220 [GeV] m = 0.800 [GeV] 0.4 0.2 0.2 $O^2 [GeV^2]$ $O^2 [GeV^2]$

ors

Pion electromagnetic form factor (on-shell)

- Ref. Leão, de Melo, Frederico, Choi and Ji, Phys.Rev.D 110 (2024) 7
- Ref. Ho-Meoyng Choi, T. Frederico, Chueng-Ryong Ji and J. de Melo. Phys.Rev.D 100 (2019) 11, 116020.

くロト く伺下 くまト くまう

Pion wave function $\Psi(x, k_{\perp})$ from the SYM model

- Left panel: Fixed values x = 0.5 for various values of t times k_{\perp} .
 - Right panel: Fixed values of $k_{\perp} = 0$ for two value of t times x.

э

・ロン ・回 と ・ 回 と

Twist-2 pion TMD $f(x, k_{\perp})$ for SYM model; fixed value of $Q^2 = 0$, with two values of $t = m_{\pi}^2$, and -0.165GeV^2

æ

・ロト ・四ト ・ヨト ・ヨト

Twist-2 PDF f(x) with SYM model, at fixed $Q^2 = 0$ and some values of t.

Light-front quark model on-shell pion, from the the Gaussian wave function**

** H.-M. Choi and C.-R. Ji, Phys. Rev. D 110, 014006 (2024)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pion off-shell EM form factor $F_1(Q^2, t)$ from the CON and SYM models versus -tRight panel for $F_1(0, t)$ Left panel: $F_1(Q^2, t)$ for $Q^2 = 0.526, 0.877, 1.455$ and 2.703 [GeV]²

イロト イヨト イヨト イヨト

Pion off-shell EM form factor $F_1(Q^2, t)$ Left: $F_1(Q^2, t)$ extracted from the experimental cross sections, CON, and SYM models Right: $F_1(Q^2, t) \times -t$ for the same models. The values of (Q^2, t) are from the table, along with the experimental and theoretical results.

・ロト ・同ト ・ヨト ・ヨト

Pion off-shell EM form factor $g(Q^2, t)$. Right: $g(Q^2, t) \times Q^2$, compared with the extracted result from the experimental data^{*} with $F_1(0, t)$ from CON and SYM models

Left: $g(Q^2, t) \times -t$ with same models \star H. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008)

ヘロ と ヘ 同 と ヘ 目 と 一 日 と 一

The 3D plots of the form factor $F_1(Q^2, t)$ extracted from the experimental data^{*}. Inputs for " $F_1(0, t)$ " from the CON model (left), and SYM model (right panel)

 \star H. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008).

The 3D plots of the form factor $g(Q^2, t)$ extracted from the experimental data^{*}. Inputs for " $F_1(0, t)$ " from the CON model (left), and SYM model (right panel) * H. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008).

• Off-shell form factor sum rule**

$$F_{1}(Q^{2},t) - F_{1}(0,t) + Q^{2}g(Q^{2},t) = 0$$

æ

▶ < ⊒ ▶

Cross-sections calculated with CON and SYM models, compared with the experimental data, for fixed Q^2 and W, and varying $t \star H$. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008).

48 / 53

• • = • • = •

* H. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008).

A B > A B >

 \star H. P. Blok et al. (Jefferson Lab F_{π} Collaboration) Phys. Rev. C 78, 045202 (2008).

A B > A B >

< A >

э

Summary

- Light-front approach correctly describes hadronic bound states
- Take New Informations about Bound States
- Breaking of the rotational invariance has to be evaluated
- Choose $G_{\pi NN}(t)$ with two differents parametrizations
- Use WTI to related $F_1(Q^2, t)$ and $F_2(Q^2, t)$
- Use $F_1(Q^2, t)$ and $F_2(Q^2, t)$ relationship to extract the EMFF $g(Q^2, t)$
- The Light-front pion wave function off-shell is very sensitive for
- the t and x
- Show $F_1(Q^2, t) \times |-t|$ from experiments
- Show $g(Q^2, t) \neq 0$ no matter what $G_{\pi NN}(t)$ is used

・ロト ・同ト ・ヨト ・ヨー うのの

- The electromagnetic form factors from the models, both on-shell and off-shell F_1 are compared with the experimental data
- Also for g(Q, t) electromagnetic form factor (on and off -shell)
- The cross-section from the models are compared with the experimental data, giving good results

Next:

- Kaon Electromagetic Form Factors / on-shell and off-shell
- Parton Distribution Function off-shell regime (on-shell)
- Gravitational Form factor (Pion, Kaon)
- Frame off-shell dependence in the Light-Front

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Thanks to the Organizers Physics Opportunities at an Electron-Ion Collider POETIC XI - 2025 Florida - Miami - USA

Support LFTC and Brazilian Agencies FAPESP, CNPq and CAPES Thanks (Obrigado)!!

A B M A B M