

Progress and Opportunities for nuclear PDFs & the EIC

POETIC25 - FIU - Miami

Peter Risse

Structure of nuclei

- Nuclear binding energy $\sim 1\%$ of mass
- First approximation: nuclei consist of <u>free</u> protons & neutrons

 $F_2^A(x) \approx ZF_2^{p,free}(x) + NF_2^{n,free}(x)$

Structure of nuclei

- \blacktriangleright Nuclear binding energy $\sim 1\%$ of mass
- First approximation: nuclei consist of free protons & neutrons

$$F_2^A(x) \neq ZF_2^{p,free}(x) + NF_2^{n,free}(x)$$

 \Rightarrow does not work

Structure of nuclei

- Nuclear binding energy $\sim 1\%$ of mass
- First approximation: nuclei consist of free protons & neutrons

$$F_2^A(x) \neq ZF_2^{p,free}(x) + NF_2^{n,free}(x)$$

 \Rightarrow does not work

- Cross-sections in nuclear collisions are modified
- Can we translate these modifications into universal quantities?

$\Rightarrow \textbf{nuclear PDFs}$

Theoretical foundation and assumptions

Natural theoretical framework: Collinear Factorization

DIS-like Process

 $d\sigma_{lA \to lX} = \sum_{i}^{q, \bar{q}, g} f_i^{(A, Z)} \otimes d\hat{\sigma}_{il \to l'X}$

DY-like Process

$$d\sigma_{pA o l\bar{l}X} = \sum_{i,j}^{q,\bar{q},g} f_i^p \otimes f_j^{(A,Z)} \otimes d\hat{\sigma}_{ij o l\bar{l}X}$$

Theoretical foundation and assumptions

Natural theoretical framework: Collinear Factorization

DIS-like Process

$$d\sigma_{lA \to lX} = \sum_{i}^{q,\bar{q},g} f_i^{(A,Z)} \otimes d\hat{\sigma}_{il \to l'X}$$

Assumptions

Averaged proton/neutron with isospin symmetry

$$f_i^{(A,Z)} = \frac{Z}{A} f_i^{p/A} + \frac{A-Z}{A} f_i^{n/A} \quad \text{where} \quad \begin{array}{l} u^{n/A}(x) = d^{p/A}(x) \\ d^{n/A}(x) = u^{p/A}(x) \end{array}$$

DY-like Process

$$d\sigma_{pA \to l\bar{l}X} = \sum_{i,j}^{q,\bar{q},g} f_i^p \otimes f_j^{(A,Z)} \otimes d\hat{\sigma}_{ij \to l\bar{l}X}$$

Problems:

- difficult flavor separation
- need more isospin-asymetric nuclei

Theoretical foundation and assumptions

Natural theoretical framework: Collinear Factorization

DIS-like Process

$$d\sigma_{lA \to lX} = \sum_{i}^{q,\bar{q},g} f_i^{(A,Z)} \otimes d\hat{\sigma}_{il \to l'X}$$

Assumptions

Averaged proton/neutron with isospin symmetry

$$\begin{aligned} \boldsymbol{f}_{i}^{(A,Z)} &= \frac{Z}{A} f_{i}^{p/A} + \frac{A-Z}{A} f_{i}^{n/A} \quad \text{where} \quad \begin{aligned} \boldsymbol{u}^{n/A}(x) &= d^{p/A}(x) \\ d^{n/A}(x) &= u^{p/A}(x) \end{aligned}$$

DY-like Process

$$d\sigma_{pA \to l\bar{l}X} = \sum_{i,j}^{q,\bar{q},g} f_i^p \otimes f_j^{(A,Z)} \otimes d\hat{\sigma}_{ij \to l\bar{l}X}$$

Problems:

difficult flavor separation

need more isospin-asymetric nuclei

Neglect contributions from x > 1

DGLAP evolution equations

▶ free proton PDFs sum rules

under investigation at JLab/EIC

Nuclear modification: free proton vs bound proton

Methodology and experimental data

Methodology and experimental data

Enlarged kinematic cuts

Kinematic variables: $Q^2 \quad \& \quad W^2 = Q^2 rac{1-x}{x} + M_N$

Enlarged kinematic cuts

Kinematic variables:

$$Q^2 \quad \& \quad W^2 = Q^2 \frac{1-x}{x} + M_N$$

Requires proper treatment of:

deuteron corrections [PRD 93, 114017 (2016)]

target mass corrections (TMCs)

[Prog.Part.Nucl.Phys. 136 (2024) 104096]

higher twist effects

[PRD 93, 114017 (2016)]

EIC: projected neutral current DIS data

kinematic coverage more than doubles

"EIC will be the nuclear HERA"

Comparison of available nPDFs

	KSASG20	TUJU21	EPPS21	nNNPDF3.0	nCTEQ15HQ
	PRD 104, 034010	PRD 105, 094031	EPJC 82, 413	EPJC 82, 507	PRD 105, 114043
<i>lA</i> NC DIS	✓	✓	1	1	✓
$\nu A \text{ CC DIS}$	1	1	1	1	
pA Drell-Yan	✓		1	1	√
πA Drell-Yan			1		
RHIC dAu π			1		✓
LHC $pPb \pi, K$					\checkmark
LHC $pPb W/Z$		1	1	1	✓
LHC pPb dijet			1	1	
LHC pPb HQ			✓ GMVFNS	✓ FO+PS(rew)	✓ ME fit
LHC quarkonium					🗸 ME fit
LHC $pPb \gamma$				1	
Kinematic cuts	$Q > 1.3 {\rm GeV}$	$Q > 1.87 \; {\rm GeV}$	Q > 1.3 GeV	$Q > 1.87 \; {\rm GeV}$	Q > 2 GeV
		W > 3.5 GeV	$W>1.8~{ m GeV}$	W > 3.5 GeV	$W > 3.5 \mathrm{GeV}$
			$p_T^{HQ} > 3 \text{ GeV}$		$p_T^{HQ(SIH)} > 3 \text{ GeV}$
No data points	4335	2410	2077	2188	1496
No free param.	9	16	24	256 (NN)	19
$\chi^2/{\sf dof}$	1.06(1.05)	0.94(0.84)	1.00	1.10	0.86
Error analysis	Hessian	Hessian	Hessian	Monte Carlo	Hessian
$\Delta \chi^2$ tol.	20 (68% CL)	50	35	N/A	35
Proton baseline	CT18	custom	CT18A	\sim NNPDF4.0	\sim CTEQ6.1
Q_0 ini. scale	1.3 GeV	1.3 GeV	1.3 GeV	1.0 GeV	1.3 GeV
No flavours	3	4	6	6	5
Deuteron treat.	fitted	fitted	free	fitted	free
QCD order	NLO & NNLO	NLO & NNLO	NLO	NLO	NLO
HQ scheme	FONLL	FONLL	S-ACOT	FONLL	S-ACOT

[2311.00450]

EPPS21 parametrization

Bound Proton

 $f_i^{p/A}(x,Q_0^2) = R_i^{p/A}(x,Q_0^2)f_i^p(x,Q_0^2)$

EPPS21 parametrization

Bound Proton

$$f_i^{p/A}(x, Q_0^2) = R_i^{p/A}(x, Q_0^2) f_i^p(x, Q_0^2)$$

with Nuclear ratio

$$R_i^{p/A}(x,Q_0^2) = \begin{cases} a_{0i} + a_{1i} \left(x - x_{ai}\right) \left[e^{-xa_{2i}/x_{ai}} - e^{-a_{2i}} \right], & x \le x_{ai} \\ b_{0i} x^{b_{1i}} \left(1 - x\right)^{b_{2i}} e^{xb_{3i}}, & x_{ai} \le x \le x_{ei} \\ c_{0i} + c_{1i} \left(c_{2i} - x\right) \left(1 - x\right)^{-\beta_i}, & x_{ei} \le x \le 1 \end{cases}$$

EPPS21 parametrization

Bound Proton

$$f_i^{p/A}(x, Q_0^2) = R_i^{p/A}(x, Q_0^2) f_i^p(x, Q_0^2)$$

with Nuclear ratio

$$R_i^{p/A}(x,Q_0^2) = \begin{cases} a_{0i} + a_{1i} \left(x - x_{ai}\right) \left[e^{-xa_{2i}/x_{ai}} - e^{-a_{2i}} \right], & x \le x_{ai} \\ b_{0i} x^{b_{1i}} \left(1 - x\right)^{b_{2i}} e^{xb_{3i}}, & x_{ai} \le x \le x_{ei} \\ c_{0i} + c_{1i} \left(c_{2i} - x\right) \left(1 - x\right)^{-\beta_i}, & x_{ei} \le x \le 1 \,, \end{cases}$$

and A-dependence through scaling

$$R_i^{p/A}(x,Q_0^2) = 1 + \left[R_i^{p/A_{\rm ref}}(x,Q_0^2) - 1 \right] \left(\frac{A}{A_{\rm ref}} \right)^{\gamma_i} \,, \; \gamma_i > 0 \,, \; A_{\rm ref} = 12$$

nNNPDF3.0 parametrization

Bound Proton

$$xf_k^{\boldsymbol{A}}(x,Q_0;\theta) = \eta_k^{\boldsymbol{A}} x^{1-\alpha_k^{\boldsymbol{A}}} (1-x)^{\beta_k^{\boldsymbol{A}}} \mathrm{NN}_k^{\boldsymbol{A}}(x,Q_0;\theta)$$

nNNPDF3.0 parametrization

Bound Proton

$$xf_k^{\boldsymbol{A}}(x,Q_0;\theta) = \eta_k^{\boldsymbol{A}} x^{1-\alpha_k^{\boldsymbol{A}}} (1-x)^{\beta_k^{\boldsymbol{A}}} \mathrm{NN}_k^{\boldsymbol{A}}(x,Q_0;\theta)$$

Neural Network with explicit A-dependence

nCTEQ parametrization (incl. an update for the upcoming release)

Proton baseline

$$\frac{\text{CTEQ6M}}{_{\text{[PRD 75,054030 (2007)]}}} \Rightarrow \frac{\text{CJ15}}{_{\text{[PRD 93, 114017 (2016)]}}}$$

nCTEQ parametrization (incl. an update for the upcoming release)

Proton baseline

$$\frac{\text{CTEQ6M}}{\text{[PRD 75,054030 (2007)]}} \Rightarrow \frac{\text{CJ15}}{\text{[PRD 93, 114017 (2016)]}}$$

PDF parametrization:

$$xf_i(x,Q_0^2) = \mathbf{c}_0 x^{\mathbf{c}_1} (1-x)^{\mathbf{c}_2} \left(1 + \mathbf{c}_3 \sqrt{x} + \mathbf{c}_4 x + \mathbf{c}_5 \sqrt{x}^3 \right) \qquad i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}$$

$$\bar{d}/\bar{u}(x,Q_0) = \mathbf{c}_0 x^{\mathbf{c}_1} (1-x)^{\mathbf{c}_2} + 1 + \mathbf{c}_3 x (1-x)^{\mathbf{c}_4} \qquad Q_0 = 1.3 \,\mathrm{GeV}$$

nCTEQ parametrization (incl. an update for the upcoming release)

Proton baseline

$$\frac{\text{CTEQ6M}}{_{\text{[PRD 75,054030 (2007)]}}} \Rightarrow \frac{\text{CJ15}}{_{\text{[PRD 93, 114017 (2016)]}}}$$

PDF parametrization:

$$xf_{i}(x,Q_{0}^{2}) = \mathbf{c}_{0}x^{\mathbf{c}_{1}}(1-x)^{\mathbf{c}_{2}}\left(1+\mathbf{c}_{3}\sqrt{x}+\mathbf{c}_{4}x+\mathbf{c}_{5}\sqrt{x}^{3}\right) \qquad i = u_{v}, d_{v}, g, \bar{u}+\bar{d}, s+\bar{s}$$
$$\bar{d}/\bar{u}(x,Q_{0}) = \mathbf{c}_{0}x^{\mathbf{c}_{1}}(1-x)^{\mathbf{c}_{2}}+1+\mathbf{c}_{3}x(1-x)^{\mathbf{c}_{4}} \qquad Q_{0} = 1.3 \,\mathrm{GeV}$$

with updated *A*-dependence:

Currently:
$$c_k(A) \equiv p_k + a_k \left(1 - A^{-b_k}\right)$$
 \Downarrow Future: $c_k(A) \equiv p_k + a_k \ln(A) + b_k \ln^2(A)$

Nuclear ratio of EPPS21 vs. nNNPDF3.0 vs. nCTEQ15HQ

Progress & Opportunities for nPDFs in connection with the EIC

What else can the EIC do for nPDFs?

Nuclei currently included

Isotope chart

Progress & Opportunities for nPDFs in connection with the EIC

Short Range Correlations & nuclear PDFs

Modification of Quark-Gluon Distributions in Nuclei by Correlated Nucleon Pairs

A.W. Denniston [©], ^{1, *} T. Ježo [©], ^{2, +} A. Kusina [©], ³ N. Derakhshanian [©], ³ P. Duwentäster [©], ^{2, 4, 5} O. Hen [©], ¹ C. Keppel [©], ⁶ M. Klasen [©], ^{2, 7} K. Kovařík [©], ² J.G. Morfin [©], ⁸ K.F. Muzakka [©], ^{2, 0} F.I. Olness [©], ¹⁰ E. Piasetzky [©], ¹¹ P. Risse [©], ² R. Ruiz [©], ³ I. Schienbein [©], ¹² and J.Y. Yu. [©] ¹²

New SRC-motivated parametrization

Modeling of short-ranged nuclear structure suggests separation of single nucleons from SRC nucleon pairs.

Translation to parton model

$$\begin{split} f_i^A(x,Q_0) = & \frac{Z}{A} \left[\left(1 - \boldsymbol{C_p^A} \right) f_i^p(x,Q_0) + \boldsymbol{C_p^A} f_i^{p,SRC}(x,Q_0) \right] \\ & + \frac{N}{A} \left[\left(1 - \boldsymbol{C_n^A} \right) f_i^n(x,Q_0) + \boldsymbol{C_n^A} f_i^{n,SRC}(x,Q_0) \right] \\ f_i^{p/n}(x,Q_0) & \boldsymbol{C_p^A, C_n^A} & f_i^{p,SRC}(x,Q_0), f_i^{n,SRC}(x,Q_0) \\ \text{free nucleon PDFs} & \text{fraction of nucleon in SRC pairs} & \text{modified nucleon in SRC pair} \\ \boldsymbol{A-\text{independent}} & \boldsymbol{A-\text{dependent}} & \boldsymbol{A-\text{independent}} \end{split}$$

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{\rm data}$	1136	92	120	336	1684	

▶ three fits: one with traditional parametrization, two fits SRC inspired

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$rac{\chi^2_{ m tot}}{N_{ m DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{\rm data}$	1136	92	120	336	1684	

▶ three fits: one with traditional parametrization, two fits SRC inspired

better overall quality for the SRC inspired fit

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{\rm data}$	1136	92	120	336	1684	

- ▶ three fits: one with traditional parametrization, two fits SRC inspired
- better overall quality for the SRC inspired fit
- \blacktriangleright particularly pronounced for high-x JLab data

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{\rm data}$	1136	92	120	336	1684	

- ▶ three fits: one with traditional parametrization, two fits SRC inspired
- better overall quality for the SRC inspired fit
- \blacktriangleright particularly pronounced for high-x JLab data
- ▶ worse description of W/Z data, which probe lower x-values

SRC fractions

Fit proton & neutron fractions independently: baseSRC

- both proton and neutron fraction have simple logarithmic A-dependence
- $C_p^A \& C_n^A$ unconstrained for nuclei with sparse data

SRC fractions adjusted for neutron excess

Fit proton & neutron fractions independently: baseSRC

- both proton and neutron fraction have simple logarithmic A-dependence
- ▶ C_p^A & C_n^A unconstrained for nuclei with sparse data

New fit with $C_n^A = Z/NC_p^A$: pnSRC

- neutron fractions adjusted for excess
- better agreement with proton fractions
- ▶ small $\chi^2/N_{\rm DOF}$ increase, but less parameters to fit!

Progress & Opportunities for nPDFs in connection with the EIC

Thank you!

Preliminary results: *A*-dependence

