Lattice Calculation of TMD Physics in the EIC Era

Physics Opportunities at an Electron-Ion Collider XI, Florida International University, Miami, FL, USA February 25, 2025

Yong Zhao

OUTLINE

Large-momentum effective theory

- Theoretical framework
- Collins-Soper kernel
- Soft function and TMDPDFs

New approach without Wilson lines

- TMDs from Coulomb-gauge correlations
- Numerical applications
- Better interpolators for boosted hadron
- Summary

LARGE-MOMENTUM EFFECTIVE THEORY (LAMET)

Revisit Feynman's parton picture in the infinite momentum frame:

Simulating
$$\langle P = \infty | O(t = 0) | P = \infty \rangle$$
? X
 $P \ll 2\pi/a$

Nevertheless, it is possible to simulate at proton at large momentum:

TRANSVERSE MOMENTUM DISTRIBUTIONS

Beam function:

Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$

 τ : rapidity divergence regulator

Soft function:

TMDS FROM LAMET

Beam function (in Collins' scheme):

Quasi-beam function:

 $n_b(y_B) = (n_b^+, n_b^-, 0_\perp) = (-e^{2y_B}, 1, 0_\perp)$

Spacelike but close-to-light-cone $(y_B \rightarrow -\infty)$ Wilson lines, not directly calculable on the lattice

Equal-time Wilson lines, directly calculable on the lattice 🙂

SOFT FUNCTION (IN COLLINS' SCHEME)

Not directly calculable on the lattice, but has the asymptotic behavior:

Can be extracted from a meson form factor:

 $\lim_{P^{Z} \gg m_{\pi}} \langle \pi(-P) | j_{1}(b_{\perp}) j_{2}(0) | \pi(P) \rangle = \frac{S_{r}^{-1}(b_{\perp},\mu) \int dx dx' H(x,x',\mu)}{\times \phi^{\dagger}(x,b_{\perp},P^{Z},\mu) \phi(x,b_{\perp},P^{Z},\mu)}$

 $\phi(x, b_{\perp}, P^{z}, \mu)$: quasi-TMD wave function \checkmark

- J_{1} P = C C S P' S P'
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105 (2022);
- Deng, Wang and Zeng, JHEP **09** (2022).

FACTORIZATION FORMULA FOR THE QUASI-TMDS

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r(b_T, \mu)}} = C(\mu, x\tilde{P}^z) \exp\left[\frac{1}{2}\gamma_{\zeta}(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]$$

- Collins-Soper kernel $\gamma_{\zeta}(\mu, b_T)$;
- No flavor mixing, easy flavor separation;
- Spin-dependence, e.g., Sivers function;
- Full (*x*, *b_T*) dependence.
- Twist-3 PDFs from small b_T expansion.
- Higher-twist TMDs.

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019);
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021);
- Ebert, Schindler, Stewart and YZ, JHEP 04 (2022).
- Rodini and Vladimirov, JHEP 08 (2022).

STATE-OF-THE-ART COLLINS-SOPER KERNEL

$$\gamma_{\zeta}(\mu, b_{\perp}) = \frac{d}{d \ln P^z} \ln \frac{\tilde{f}(x, b_{\perp}, \mu, P^z)}{C(\mu, x P^z)}$$

- Physical quark masses, large Lorentz boosts
- Continuum extrapolation with a=0.15, 0.12, 0.09 fm
- Controlled Fourier transform
- Lattice renormalization and operator mixing subtraction
- Next-to-next-to-leading logarithmic (NNLL) order matching
- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, PRD 108 (2023);
- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, PRL 132 (2024).

CS kernel extracted in the *x*-space

Almost flat at moderate *x*, an important indictor of the validity of factorization

STATE-OF-THE-ART COLLINS-SOPER KERNEL

- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, PRD 108 (2023);
- A. Avkhadiev, P. Shanahan, M. Wagman and YZ, PRL 132 (2024).

SV19: Scimemi and Vladimirov, JHEP 06 (2020) **Pavia19**: Bacchetta et al., JHEP 07 (2020). **MAP22**: Bacchetta et al., JHEP 10 (2022). **ART23**: Moos et al., JHEP 05 (2024). **IFY23**: Isaacson et al., PRD 110 (2024).

Nice agreement with phenomenology ③

SOFT FUNCTION

M.-H. Chu, et al. (LPC), JHEP 08 (2023).

- Current state-of-the-art is at next-to-leading order (NLO)
- Continuum and physical quark mass limits not available so far
- The only calibration so far is perturbative prediction at $a \ll b_{\perp} \ll \Lambda_{QCD}^{-1}$

NUCLEON VALENCE TMDPDFS

SYSTEMATICS IN LATTICE CALCULATIONS

- Gauge link induces statistical noise, while signal is exponentially suppressed at large b_T ;
- Complex operator mixings due to the breaking of symmetries by the staple;
- Additional systematics due to multiple scales $\{b^z, b_T, \eta\}$ involved.

OUTLINE

- Large-momentum effective theory
 - Theoretical framework
 - Collins-Soper kernel
 - Soft function and TMDPDFs

New approach without Wilson lines

- TMDs from Coulomb-gauge correlations
- Numerical applications
- Better interpolators for boosted hadron

Summary

"Parton distributions from boosted fields in the Coulomb gauge" Xiang Gao, Wei-Yang Liu and YZ, PRD 109 (2024), 094506

"Transverse momentum distributions from lattice QCD without Wilson lines" YZ, PRL 133 (2024), 241904

QUASI DISTRIBUTIONS IN THE COULOMB GAUGE

Parton distributions probe the correlation of energetic quarks and gluons dressed in the gauge background, which can be formulated by fixing a physical gauge condition.

Universality in LaMET: G(A) = 0, $G(A) = A^0$, A^z , $\nabla \cdot A \stackrel{\bullet}{\cdot} A$. Y. Hatta, X. Ji, and YZ, PRD 89 (2014); X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

FACTORIZATION FORMULA

YZ, PRL 133 (2024)

$$\frac{\tilde{B}(x,b_{\perp},\mu,P^{z})}{\tilde{S}_{C}(b_{\perp},\mu,0)} = \left| C\left(\frac{xP^{+}}{\mu}\right) \right|^{2} \exp\left[\frac{1}{2}\gamma_{\zeta}(b_{\perp},\mu)\ln\frac{2(xP^{+})^{2}}{\zeta}\right] f(x,b_{\perp},\mu,\zeta)$$
NLO

Soft function can be extracted from the same meson form factor:

$$\lim_{P^{Z} \gg m_{\pi}} \langle \pi(-P) | j_{1}(b_{\perp}) j_{2}(0) | \pi(P) \rangle = \frac{1}{[\tilde{S}_{C}(b_{\perp},\mu,0)]^{2}} \int dx dx' H(x,x',\mu) \quad \text{NLO}$$
$$\times \phi_{C}(x,b_{\perp},P^{Z},\mu) \phi_{C}(x',b_{\perp},P^{Z},\mu)$$

 $\phi_{\mathcal{C}}$: Coulomb-gauge quasi-TMD wave function \checkmark $\phi_{\mathcal{C}}^* = \phi_{\mathcal{C}}$

U.S. DEPARTMENT OF U.S. Department of Energy laboratory wanaged by UChicago Argonne, LLC

ADVANTAGES

 Significantly improved statistical precision, access to larger b_T;

• Absence of linear power divergence;

 $\bar{\psi}_0(b)\Gamma\psi_0(0) = Z_{\psi}(a)[\bar{\psi}(b)\Gamma\psi(0)]_r$

Coulomb gauge (CG) approach vs gauge-invariant (GI) approach

D. Bollweg, X. Gao, S. Mukherjee and YZ, PLB 852 (2024)

X. Gao, W.-Y. Liu and YZ, PRD 109 (2024)

• Access to larger off-axis momenta thanks to 3D rotational symmetry.

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 $(q + \bar{q})$

PARTON DISTRIBUTION FUNCTIONS Mpi $se_{i} = 34 \pm 1 \times 150$ configurations with Wilson-Proton unpolarized valence PDF $f_u - f_d - (f_{\overline{u}} - f_{\overline{d}})q - \bar{q})/2$ Clover valence fermionsentum $3004 \text{MeV}, V_z^{max} = 3.04 \text{ GeV}$ $a = 0.06 \text{ fm} m_{eV} = 160 \text{ MeV}$ NNPDF21, NNLO 3.04 GeV $P^z = 2.43$ GeV. NLO = 2 GeV $P^{z} = 2.43 \text{ GeV}$. NLO+RGR n-Hellmann Megno yalen cetquark PDF $f_{(q} - \overline{q})/2(x, \mu = \frac{1}{2})/2$ $t = t_{sep} + dt - \tau_{cut} A$ **Preliminary**) $\mu = \sum_{i=1}^{n} \frac{\tau_{cut}}{R} R$ $t_{\rm sep} + dt, t$ ι_{sep}, l PDF, NLL+NLO, P^z=2.15 GeV dt PDF, NLL+NLO, P^z =2.24 GeV \mathcal{E} xFitter20 $t_{\rm sep} \ge 10^{\circ} {\rm a}$ Ratio Fit $t_{sep} = 6 a$ $t_{\rm sep} = 10 \text{ a}$ 00 0.2 0.4 0.6 0.8 1.0 $t_{sep} = 12 a$ a) FH Fit $t_{sep} = 8 a$ $t_{sep} = 12 a$ Ś Ľ, 0.6 X. Gao, J. He, YZ et al, in preparation. GeV 0.4 See Jinchen He's poster presentation \bar{q} 0.21.2 Off-axis directions used to reach large momentum X. KGao, xAgreement with the gauge-inwariant approach and, W.-Y. Liu and YZ, PRD 109 (2024) -0.2phenomenology within statistical 4 from SLO+RGR

17

 $(\tau - t_{sep}/2) / a$

2

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 \sim

SOFT FUNCTION AND UNPOLARIZED PION TMDPDF

19

- $N_f = 2 + 1$ HISQ configurations with Wilson-Clover valence fermions
- a = 0.06 fm, $m_{\pi} = 300$ MeV, $P_z^{max} = 3.04$ GeV (off-axis).

X. Gao, J. He, YZ et al, in preparation.

Intrinsic soft factor

SPIN-DEPENDENT PROTON TMDPDF

- $N_f = 2 + 1$ (chiral) domain-wall fermion configurations
- a = 0.0836 fm, $m_{\pi} = 140$ MeV, $P_z^{max} = 1.62$ GeV.

X. Gao, **YZ** et al, in preparation.

The gauge-invariant method (colored vertical bands) can predict $b_T \leq 0.4$ fm.

The Coulomb gauge method is more precise and reliable at very large b_T

Meaningful comparison with phenomenology.

MAP24: Bacchetta et al., JHEP 08(2024). ART23: Moos et al., JHEP 05 (2024).

CONCEPTION ACCOUNT OF ACCOUNT OF

BETTER INTERPOLATORS FOR BOOSTED HADRONS

- Old interpolator for pion: $\langle \pi(p) | \bar{u} \gamma_5 d \rangle \propto m_{\pi}$
- New interpolators for pion: $\langle \pi(p) | \bar{u} \gamma_5 \gamma_{\mu} d \rangle \propto P_{\mu}$
- Signal in $\pi\pi$ correlation $\propto \left(\frac{P_{\mu}}{m_{\pi}}\right)^2$, while noise stays at the same level regardless of P_{μ}
- Observed signal-to-noise enhancement factor
 - 50 for pion at ~ 2 GeV, or O(2500) in statistics
 - 10 for nucleon ~ 3 GeV, or O(100) in statistics
- Extremely valuable for precision nucleon 3D imaging!

Pion energy at different momenta

R. Zhang, A. Grebe, D. Hackett, M. Wagman and YZ, arXiv: 2501.00729.

SUMMARY

- Much progress has been made in the LaMET calculation of TMD physics;
- The Collins-Soper kernel is under better systematic control now, while more work needs to be done to reliably calculate the soft function and TMDPDFs;
- The Coulomb-gauge method has the potential to significantly improve the precision in the non-perturbative region, thus becoming a standard approach for TMD physics in the future.
- The kinematically enhanced interpolators can have a profound impact on precise lattice calculation of parton physics.
- There are a lot of exciting new results to look forward to in the future!

