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Overview of the Nambu-Jona-Lasinio model1

The NJL model is a low-energy, effective theory of the
strong interaction that mimics many key features of QCD,
such as dynamical chiral symmetry breaking (DCSB).
Thus, it is a useful tool to help understand
non-perturbative phenomena in low energy QCD.

Unlike QCD, the NJL model considers only the quarks as
the explicit degrees of freedom, neglecting the gluons

Dynamics due to gluon-quark interaction and gluon
self-couplings are absorbed into the four-fermion contact
interaction.

In order to preserve the chiral symmetry, we include the
pseudoscalar and vector diquarks in addition to the scalar
and axial-vector ones already included in the previous
work.

1Nambu and Jona-Lasinio, Phys. Rev. 122, 345; Phys. Rev. 124, 246.
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Confining NJL2

Confinement is simulated by the introduction of an infrared
cutoff in the proper-time regularization scheme.

Doing this eliminates free quark propagation (it gets rid of
the imaginary part of hadron decaying into quarks). (In a
way that maintains covariance.)

The nucleon is modeled by a relativistic quark-diquark
bound state satisfying the Faddeev equation.

We calculate PDF, FF, TMD, GPD, etc. with this model,
as well as study nucleon in-medium modification, and the
binding of atomic nuclei.

2H. Mineo et. al, Nucl. Phys. A 735, 482 (2004)
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Proper-time regularization scheme

As an effective theory, NJL model is non-renormalizable, thus it
needs a regularization prescription in order to be well-defined.
We use the proper-time regularization scheme

1

X
=

1

(n− 1)!

∫ ∞

0
dτ τn−1e−τX

−→ 1

(n− 1)!

∫ 1/Λ2
IR

1/Λ2
UV

dτ τn−1e−τX ,

where X represents a product of propagators that have been
combined using Feynman parametrization. Only the ultraviolet
cutoff ΛUV is needed to render the theory finite, while ΛIR is
introduced to mimic confinement.
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NJL Lagrangian

In the qq channel, the NJL Lagrangian for SU(2) flavor is given
by:

where C = iγ2γ0 is the charge conjugation matrix and

βA =
√

3
2λA (A = 2, 5, 7). q is the quark field,

m̂ ≡ diag[mu,md] is the current quark mass matrix, which we
take as mu = md. τ⃗ are the Pauli matrices for the SU(2) flavor,
and Gs, Gp, and Ga are the coupling constant of the four-fermi
interaction in each diquark interaction channel. We will respect
the three-flavor chiral symmetry and thus take Gp = Gs.
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Mass gap equation 3

The NJL gap equation in the Hartree-Fock approximation is shown
below, where the thin line represents the elementary quark
propagator, S−1

0 (k) = /k −m+ iε, and the shaded circle represents the
q̄q interaction kernel. Higher-order terms, attributed to meson loops,
for example, are not included in the gap equation kernel.

The dressed quark propagator thus has the solution
S(k)−1 = /k −M + iε, where

3I. C. Cloét, W. Bentz, and A. W. Thomas, Phys. Rev. C 90, 045202
(2014)
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Dressed mass as a function of the coupling 4

4P. R. Ramı́rez, PhD dissertation, Illinois Institute of Technology, 2021
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Bethe-Salpeter equation

This works for both mesons and diquarks very similarly.
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Bethe-Salpeter vertices
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Faddeev equation
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The nucleon-quark-diquark vertex

The nucleon vertex function is parametrized by
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Model parameters

The two-flavor NJL has the following parameters:

q̄q couplings: Gπ, Gρ, Gω

qq couplings: Gs(= Gp), Ga(= Gv)

masses: mu = md

regularization: ΛIR, ΛUV

We assign values a priori to the following parameters:

ΛIR = 240 MeV and M = 400 MeV

The remaining parameters can then be fixed by

ΛUV ↔ fπ
Gπ,ρ,ω ↔ mπ,ρ,ω

Gs, Ga ↔ MN , M∆
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Quark light-cone momentum distributions

The leading twist spin-independent and spin-dependent quark
light-cone momentum distributions in the nucleon are defined
by the following equations:

fq(x) =

∫
dξ−

2π
eixp

+ξ− < p, s|ψ̄q(0)
1

2
γ+ψq(ξ

−)|p, s >c,

∆fq(x) =

∫
dξ−

2π
eixp

+ξ− < p, s|ψ̄q(0)
1

2
γ+γ5ψq(ξ

−)|p, s >c,

where ψq is the quark field of flavor q, x is the Bjorken scaling
variable and the subscript c means that only connected matrix
elements are included.
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Feynman diagrams for the PDF

At our model scale, there is no sea quark and no gluons. The
Feynman diagram for calculating the valence quark PDFs are
shown below.

The single line represents the quark propagator and the double line the
diquark propagator. The shaded oval denotes the quark-diquark vertex
function and the red cross represents the operator insertion which has the
form of γ+δ(x− k+/p+) 1

2
(1± τz) for the spin-independent distribution and

γ+ → γ+γ5 for the spin-dependent one.
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Helicity distributions

For the calculation of the spin-dependent PDFs, we use the result

u(p, s)ū(p, s) =
(
/p+MN

) 1 + γ5/s

2
,

where sµ is the spin vector of the particle satisfying s2 = −1 and
s · p = 0. In general, sµ can be written as

sµ =

(
p⃗ · n⃗
MN

, n⃗+
(p⃗ · n⃗)p⃗

MN (MN + p0)

)
where n⃗ = p⃗

|p⃗| if the particle is longitudinally polarised, n⃗ · p⃗ = 0 if

transversely polarized.
For the helicity distribution, the proton is longitudinally polarized,
and the helicity distribution is defined as

∆f(x) = f+(x)− f−(x),

i.e., the difference in the distributions of the quark’s spin aligned with
the proton’s versus the quark’s spin anti-aligned with the proton’s.
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Results for the spin-independent PDFs

The model scale is found to be 0.165 GeV 2, which is
comparable but slightly higher than the previous
0.16 GeV 2. This is understandable because we’ve added
more complexity to the model.

The number and momentum sum rules are satisfied∫ 1

0
dxfq/P (x) = Nq/P ,

∫ 1

0
dxx

[
fu/P (x) + fd/P (x)

]
= 1.

To compare our results to the experimental data, need to
evolve to a higher energy scale where empirical PDFs are
available.
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Results for the spin-independent PDFs
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Results for the spin-independent PDFs
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Results for the spin-dependent PDFs
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Results for the spin-dependent PDFs

For the full model we obtain a gA value of 1.207, which is
in excellent agreement to the known value of gA = 1.267.
In comparison, the model with only scalar and axial vector
diquarks obtains a gA value of 1.092.

The positivity constraints for the PDFs are satisfied in our
model

fq(x) ≥ 0, fq(x) ≥ |∆fq(x)|.
As x→ 1, our result calculated from the full model gives
∆u/u ≈ 0.67 while ∆d/d ≈ 0.19. In comparison, the model
with scalar and axial vector gives a ∆u/u ≈ 0.54 while the
∆d/d ratio approaches 0.14.
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Results for the spin-dependent PDFs
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Transversity PDFs

The leading twist transversity quark light-cone momentum
distributions in the nucleon are defined equivalently by Eq. (1)
or Eq. (2) below.

p−

∫
dξ−

2π
eixp

+ξ−⟨p, s|ψ̄q(0)iσ
+iψq(ξ

−)|p, s⟩c

= ū(p)iσ+iu(p)∆T fq(x), (1)

p−

∫
dξ−

2π
eixp

+ξ−⟨p, s|ψ̄q(0)σ
+jγ5ψq(ξ

−)|p, s⟩c

= ū(p)σ+jγ5u(p)∆T fq(x). (2)
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Transversity PDFs

Defining the two operators for the transversity PDF
calculation as O1 =

1
2 iσ

+i = 1
2γ

iγ+, where i = 1, 2, and
O2 =

1
2σ

+jγ5 =
1
2 iγ

+γjγ5, where j = 1, 2, j ̸= i, we can
prove that O1 = ϵ+−ijO2.

To get the PDF itself, we need to divide the results of the
diagrammatic evaluation by
1

2p+
ūiσ+iu = 1

2p+
2iϵ+i−jp−sj = iϵ+i−jsj = iϵ+−ijsj for O1,

and 1
2p+

ūσ+jγ5u = 1
2p+

i2p+sj = isj for O2.

Thus, the PDFs obtained in our calculation using O1 and
dividing by iϵ+−ijsj , versus using O2 and dividing by isj

are formally completely equivalent, and we do get that in
our results.
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Treatment of γ5

As is well-known in QCD calculations, a regularization scheme
such as dimensional regularization introduces complication for
the four-dimensional objects such as the Dirac matrix γ5. In
order to alter the dimension of the space-time, a prescription
must be in place to define γ5 in d ̸= 4 dimensions. As shown in
Ref. 5, one can use the prescription referred to as the Larin
scheme, where one replaces γ5 with

γ5 −→
1

24
iεµνρσγ

µγνγργσ, (3)

and replace

γαγ5 −→
1

2
(γαγ5 − γ5γ

α) (4)

or

γ5γ
α −→ −1

2
(γαγ5 − γ5γ

α) . (5)

5S. Moch, J. A. M. Vermaseren, and A. Vogt, Phys. Lett. B 748, 432
(2015)
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Treatment of γ5

This procedure is equivalent to using

γαγ5 −→
1

6
iεαµνργµγνγρ, (6)

or

γ5γ
α −→ −1

6
iεαµνργµγνγρ. (7)

We will mostly use Eqs.(6)-(7) in our calculation, since it
introduces less γ matrices than the first prescription and thus
can speed up the computation. However, the two methods are
completely equivalent and can be used interchangeably. After
the replacements, we perform the trace in d dimensions, and at
the end set d = 4.
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Treatment of γ5 impacting the results for the operators
containing γ5
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Results for the transversity PDFs

The u quark transversity distribution slightly violates its
Soffer bound in the small x (0 < x ≲ 0.2) and large x
(0.8 ≲ x < 1) regions, while the d quark distribution
completely satisfies its Soffer bound. The violation of the
Soffer bound is likely due to the approximations made in
our model, such as the static approximation, and the
on-shell approximation for the diquark states.

Our calculated results satisfy the positivity constraints for
the transversity PDFs

fq(x) ≥ |∆T fq(x)|. (8)
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Results for the u quark transversity PDFs
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Figure: All 3 leading twist PDFs of u quark in a proton at the model
scale, with the Soffer bound for the transversity PDF plotted in
dotted line.



30/36

Overview of the model Solving the model Parton distribution functions

Results for the d quark transversity PDFs
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Results for the transversity PDFs

The transversity u and d quark distributions in a proton at the
model scale, as well as at 2.4 GeV2, where we compare to their
helicity counterparts calculated from our model, evolved to
2.4 GeV2.
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Transversity PDFs of u quark in a proton comparing
with experiments 6
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6M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia, and A.
Prokudin, Phys. Rev. D 87, 094019 (2013)
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Transversity PDFs of d quark in a proton comparing
with experiments
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Results for the transversity PDFs

For the first moments of the transversity valence quark
distributions, we obtain

∫ 1
0 dx∆Tuv(x,Q

2
0) = 1.40 and∫ 1

0 dx∆Tdv(x,Q
2
0) = −0.233 at the model scale

Q2
0 = 0.165 GeV2.

This gives a nucleon isovector tensor charge of gT = 1.63
and an isosclar charge of g0T = 1.17 at Q2

0 = 0.165 GeV2.

This gives a ratio of δd/δu = −0.166.
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Summary and future work

We used the framework of the relativistic Faddeev equation
in the NJL model to calculate the quark LC momentum
distributions in the nucleon based on a straightforward
Feynman diagram evaluation.

We treated the Dirac matrix γ5 with the Larin scheme, and
used consistent regularization prescription for all 3 leading
twist PDFs.

The work can be extended to calculate GPDs and TMDs,
or to a finite baryon density calculation.
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Thank you for your attention!
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Model parameters

The ΛUV and Gπ together is determined by the pion decay
constant and pion mass.

< 0|ψ̄γµγ5ψ|π(q) >= 2ifπqµ

From this we can obtain

fπ = −12i
√
ZπM

∫
d4k

(2π)4
1

(k2 −M2) ((k + q)2 −M2)
|q2=m2

π

By solving the Bethe-Salpeter equation for the mesons, mπ and
Zπ can be related to the parameter Gπ. Thus, this equation,
together with the value of mπ, determines the parameters of
ΛUV and Gπ.
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Model parameters

Similarly, mρ and mω determine the parameters Gρ and
Gω, respectively.

Gs and Ga are determined by solving the two Faddeev
equations for the nucleon and the delta baryon.

We obtain Gs = 7.65 GeV −2 and Ga = 4.91 GeV −2.

The corresponding diquark masses are Ms = 0.679 GeV ,
Mp = 0.945 GeV , Ma = 0.929 GeV , and Mv = 1.099 GeV .

Compared to the previous values obtained without the
pseudoscalar and vector diquark channels, Ms = 0.768 GeV and
Ma = 0.929 GeV , the scalar diquark mass got smaller, while the
axial vector diquark is exactly the same. The axial vector
diquark mass does not change because the delta baryon Faddeev
equation only concerns the axial vector diquark, and is thus
unchanged from the previous work.
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Isospin factors

By separating the isospin factors, the spin-independent u and d
distributions in the proton can be expressed as

uv(x) = fsq/N (x) + fpq/N (x) +
1

3
faq/N (x) + fvq/N (x)

+ fssq(D)/N (x) + fppq(D)/N (x) +
5

3
faaq(D)/N (x) + fvvq(D)/N (x)

+ fspq(D)/N (x) + fpsq(D)/N (x) +
1√
3
fsaq(D)/N (x) +

1√
3
fasq(D)/N (x)

+ fsvq(D)/N (x) + fvsq(D)/N (x) +
1√
3
fpaq(D)/N (x) +

1√
3
fapq(D)/N (x)

+ fpvq(D)/N (x) + fvpq(D)/N (x) +
1√
3
favq(D)/N (x) +

1√
3
fvaq(D)/N (x).
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Isospin factors

And

dv(x) =
2

3
faq/N (x)

+ fssq(D)/N (x) + fppq(D)/N (x) +
1

3
faaq(D)/N (x) + fvvq(D)/N (x)

+ fspq(D)/N (x) + fpsq(D)/N (x)− 1√
3
fsaq(D)/N (x)− 1√

3
fasq(D)/N (x)

+ fsvq(D)/N (x) + fvsq(D)/N (x)− 1√
3
fpaq(D)/N (x)− 1√

3
fapq(D)/N (x)

+ fpvq(D)/N (x) + fvpq(D)/N (x)− 1√
3
favq(D)/N (x)− 1√

3
fvaq(D)/N (x).
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Treatment of γ5

Within our proper-time regularization prescription, certain
operations do not commute, e.g., Lorentz contraction and
regularization procedure. For example, for the integral of the
type

i

∫
ddl

(2π)d
l2

(l2 −∆+ iϵ)n
, (9)

where (l2 −∆+ iϵ)n is the combined denominator using
Feynman parameterization, we apply the mathematical identity

i

∫
ddl

(2π)d
l2

(l2 −∆+ iϵ)n

=i

∫
ddl

(2π)d
∆

(l2 −∆+ iϵ)n
+ i

∫
ddl

(2π)d
1

(l2 −∆+ iϵ)n−1
. (10)
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Treatment of γ5

However, for the tensor type of integral

i

∫
ddl

(2π)d
lµlν

(l2 −∆+ iϵ)n
= i

∫
ddl

(2π)d

1
dg

µν l2

(l2 −∆+ iϵ)n
, (11)

we apply the integration by parts relation

i

∫
ddl

(2π)d
l2

(l2 −∆+ iϵ)n

=
−1

2(n− 1)
i

∫
ddl

(2π)d
lµ

∂

∂lµ

1

(l2 −∆+ iϵ)n−1

=
d

2(n− 1)
i

∫
ddl

(2π)d
1

(l2 −∆+ iϵ)n−1
. (12)
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Treatment of γ5

Thus, performing the Lorentz contractions before or after the
regularization procedure will make a difference in the final
results. Therefore, we have developed a computational
prescription that is guided by preserving symmetries and
reproducing exact results. The computational procedure is the
following:

1 The epsilon tensors associated with the
Bethe-Salpeter/Faddeev vertices are contracted with the
result of the d-dimensional trace immediately after the
trace is taken.

2 The regularization scheme is then applied to the result as
the loop momentum integration is performed.

3 After the integration, the epsilon tensor from the operator
is contracted.

4 Finally, the epsilon tensor from the spin projection
operator is contracted with the result from 3.

Following these prescriptions, we made sure our model preserves
the Ward identity and gives the same result for the two
formally equivalent transversity operators.
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Treatment of γ5

As an example, the scalar quark diagram can be written down
in our model as

∆T f
s
q/N (x) = Γ̄

s
N

∫
d4k

(2π)4
δ(xp · n − k · n) (iS(k)) O1,2 (iS(k)) (−τs(p − k)) Γ

s
N

= Γ̄
s
N

∫
d4k

(2π)4
δ(xp · n − k · n) S(k) O1,2 S(k) τs(p − k) Γ

s
N . (13)

Plugging in the vertex function,

∆T f
s
q/N (x) = −ZNα

2
1 ū(p, s)

∫
d4k

(2π)4
δ(xp · n − k · n) S(k) O1,2S(k) τs(p − k) u(p, s)

= −ZNα
2
1

∫
d4k

(2π)4
δ(xp · n − k · n) Tr[ S(k) O1,2 S(k) τs(p − k)

(
/p + MN

) 1 + γ5/s

2
].

(14)

Plugging in the propagators,

∆T f
s
q/N (x) =

1

2
ZNZsα

2
1 i

∫
d4k

(2π)4
δ(xp · n − k · n)

Tr[ (/k + M) O1,2 (/k + M)
(
/p + MN

)
(1 + γ5/s)]

(k2 − M2 + i ε)2[(p − k)2 − M2
s + i ε]

.

(15)
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Treatment of γ5

Depending on the type of diquarks involved and which operator
is used, there can be occurrence of γ5 in the Faddeev and
conjugate Faddeev vertices ΓN and Γ̄N , or the operator O1 but
not the O2. Including the explicit γ5 in Eq. (15), there can be
up to 4 γ5 matrices in one Feynman diagram evaluation. For
the scalar quark diagram, however, there are only up to two γ5
matrices if we use the operator O1. When operator O1 is used,
the treatment of γ5 makes a huge impact on our result, as can
be seen from Fig. ??. While if we use the operator O2, there is
no difference in the results whether we treat γ5 or not.
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Treatment of γ5

As shown in Fig. ??, although the spin-independent result
remains the same since there is no γ5 in the equation, both the
helicity result and the transversity result using the operator O1

change a lot depending on whether we treat γ5 with the Larin
scheme, or not treat it and simply performing the trace in d = 4
dimensions, because of the γ5 matrix contained in both the
helicity and transversity O1 operator. As a result, treating γ5
with the Larin scheme is necessary to obtain the agreement of
the transversity PDF result using the two operators. Since the
two operators are formally equivalent, they must give the same
transversity PDF, and we achieve that by taking γ5 as the
Larin scheme.
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Treatment of γ5

As can be seen from Fig. ??, where O1 is used for the TR
results, for not treating the γ5, |∆T f

s
q/N (x)| is mostly less than

|f
s
q/N

(x)+∆fs
q/N

(x)

2 | (3 dotted lines), while for treating the γ5,
|∆T f

s
q/N (x)| is modified to be significantly larger than

|f
s
q/N

(x)+∆fs
q/N

(x)

2 | (3 solid lines). Being the dominant diagram,
this leads to the Soffer bound not to be satisfied in our new
model, likely due to the approximations of our model. However,
as we discussed before, it is essential to treat γ5 correctly in
order to have a consistent result for the transversity PDF
between the two equivalent operators. In addition, if we do not
treat γ5, the helicity and transversity distributions turn out to
be very similar, for this scalar quark diagram example, which is
the dominant diagram in both the helicity and transversity
PDFs. But treating the γ5 sets them apart quite a bit.
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