SIDIS @ CLAS12: Preliminary Measurements of π^{\pm} Fragmentation Functions

Jason Phelan, MIT, 8/9/2024

SU(6) Spin-Flavor Symmetry

	Proton	Delta
M [GeV]	0.938	1.22
J	1/2	3/2

SU(6) Spin-Flavor Symmetry

Ken		Proton	Delta
		0.938	1.22
	J	1/2	3/2

SU(6) Spin-Flavor Symmetry Breaking

- Mechanism of symmetry breaking unknown
- Different models make different predictions about mechanisms
 - Look to d/u (or F_2^n/F_2^p) at extreme conditions
 - Traditionally extracted through fits

Segarra EP, Schmidt A, Kutz T, Higinbotham DW, Piasetzky E, Strikman M, Weinstein LB, Hen O. Neutron Valence Structure from Nuclear Deep Inelastic Scattering. Phys Rev Lett

Semi-Inclusive DIS e' \boldsymbol{e} $\gamma^{*}\left(q ight)$

Semi-Inclusive DIS e $\boldsymbol{\ell}$ $\gamma^{*}\left(q ight)$

 $\sigma_{SIDIS} \propto \sigma_{DIS} \otimes PDF \otimes FF$ Fragmentation Function: $FF = D_q^h(z, p_T)$ • Describes probability of producing hadron hat energy fraction $z = E_{\pi}/\omega$ and p_T by scattering off of quark q Non-perturbative part of cross section • UNIVERSAL!

• Mott cross section for nucleons: $\sigma_p^{\pi\pm} \propto 4u_p(x_B)D_u^{\pm}(z) + d_p$ $\sigma_n^{\pi\pm} \propto 4u_n(x_B)D_u^{\pm}(z) + d_n$

 $\sigma_p^{\pi\pm} \propto 4u_p(x_B)D_u^{\pm}(z) + d_p(x_B)D_d^{\pm}(z) + (sea \ contributions)$ $\sigma_n^{\pi\pm} \propto 4u_n(x_B)D_u^{\pm}(z) + d_n(x_B)D_d^{\pm}(z) + (sea \ contributions)$

• Mott cross section for nucleons: $\sigma_p^{\pi\pm} \propto 4u_p(x_B)D_u^{\pm}(z) + d_p(z) + d_p($

$$(x_B)D_d^{\pm}(z) + (sea \ contributions)$$

 $(x_B)D_d^{\pm}(z) + (sea \ contributions)$

ry (i.e.
$$D_u^{\pm} = D_d^{\mp} = D^{\pm}$$
)

• Mott cross section for nucleons: $\sigma_p^{\pi\pm} \propto 4u_p(x_B)D_u^{\pm}(z) + d_p(z) + d_p($

$$(x_B)D_d^{\pm}(z) + (sea \ contributions)$$

$$(x_B)D_d^{\pm}(z) + (sea \ contributions)$$

$$ry (i.e. \ D_u^{\pm} = D_d^{\mp} = D^{\pm})$$

$$r = \frac{4 - (\sigma_d^{\pi +} / \sigma_d^{\pi -})}{4(\sigma_d^{\pi +} / \sigma_d^{\pi -}) - 1} \text{ for the deuteron!}$$

• Mott cross section for nucleons: $\sigma_p^{\pi\pm} \propto 4u_p(x_B)D_u^{\pm}(z) + d_p(z) + d_p($

$$(x_B)D_d^{\pm}(z) + (sea \ contributions)$$

$$(x_B)D_d^{\pm}(z) + (sea \ contributions)$$

$$ry (i.e. D_u^{\pm} = D_d^{\mp} = D^{\pm})$$

$$r = \frac{4 - (\sigma_d^{\pi +} / \sigma_d^{\pi -})}{4(\sigma_d^{\pi +} / \sigma_d^{\pi -}) - 1} \text{ for the deuteron!}$$

Field-Feyman Model

- Recursive model of hadronization $F(z) = f(1-z) + \int_0^1 \frac{d\eta}{\eta} f(\eta) F\left(\frac{z}{\eta}\right)$
- Extract unfavored/favored fragmentation ratio

$$r(z) = \frac{D_d^{\pi +}}{D_u^{\pi +}} = \frac{D_u^{\pi -}}{D_d^{\pi -}} = \frac{1 - z}{1 - z + \frac{z}{\beta}}$$

• $\beta \approx 0.46$ extracted from fits to data

Our Data from CLAS12 $d(e, e'\pi)X$

Our Data from CLAS12 $d(e, e'\pi)X$

CLAS12 Forward Detector

Using RG-B Deuterium data at Ebeam = 10.2, 10.4, 10.6 [GeV]

The CLAS Collaboration. Probing high-momentum protons and neutrons in neutronrich nuclei. Nature 560, 617–621 (2018). https://doi.org/10.1038/s41586-018-0400-z

•
$$Q^2 > 2 \,\mathrm{GeV}^2$$

- $W > 2.5 \, \text{GeV}$
- *y* < 0.75
- $5 < \theta_e < 35$ deg.

•
$$Q^2 > 2 \, {
m GeV}^2$$

•
$$W > 2.5 \, \text{GeV}$$

•
$$5 < \theta_e < 35$$
 deg.

- $Q^2 > 2 \, {\rm GeV}^2$
- $W > 2.5 \, \text{GeV}$
- *y* < 0.75
- $5 < \theta_e < 35$ deg.

- $Q^2 > 2 \, {\rm GeV}^2$
- $W > 2.5 \, \text{GeV}$
- *y* < 0.75
- $5 < \theta_e < 35$ deg.

• $5 < \theta_{\pi} < 35$ deg.

- $1.7 < M_X < 5 \, {\rm GeV}$
- .3 < *Z* < .8

• $5 < \theta_{\pi} < 35$ deg. • $1.25 < p_{\pi} < 5 \, {\rm GeV}$ • $1.7 < M_X < 5 \,\text{GeV}$ • .3 < Z < .8

• $5 < \theta_{\pi} < 35$ deg.

• $1.25 < p_{\pi} < 5 \, \text{GeV}$

• $1.7 < M_X < 5 \, {\rm GeV}$

• .3 < Z < .8

Matching Phase Space

 $Y^{\pi+}(p^{\pi+}, \theta^{\pi+}, \phi^{\pi+})$

 $Y^{\pi-}(p^{\pi-}, \theta^{\pi-}, \phi^{\pi-})$

What we measure

What we want

Matching Phase Space

Kaon Contamination

- TOF insufficient to identify pions and kaons above ~3 GeV
 - Use RICH (in one sector) to compute a correction

Kaon Contamination

 $Yield(\pi^{\pm})$ $Yield(\pi^{\pm} + K^{\pm} + ...)$

 π yield determined by number of events within 2σ of fit mean

Kaon Correction: π^+

 $0.10 < x_B < 0.15$ \bigcirc 0.20 < x_B < 0.25 • $0.15 < x_B < 0.20$ • $0.25 < x_B < 0.30$

Kaon Correction: π^{-}

 \bullet 0.10 < x_B < 0.15 \bigcirc 0.20 < x_B < 0.25 • $0.25 < x_B < 0.30$

Kaon Correction: π^+/π^-

What we have

Simulation - CLASDIS and GEMC

- Generator: CLADIS, a DIS generator with hadronization based on Lund-string • model
- Monte Carlo: GEMC, a GEANT based detector simulation

Torbjorn Sjostrand

What we measure

What we measure

Radiation Correction

Radiation Correction Cancels in ratio

What we measure

Vrad rec kin,acc event

Bin Migration Correction

Bin Migration Corrections: π^+

 \bigcirc 0.20 < x_B < 0.25

 \bullet 0.10 < x_B < 0.15

0	$0.30 < x_B < 0.35$		$0.40 < x_B < 0.45$	0	$0.50 < x_B < 0.55$
\bigcirc	$0.35 < x_B < 0.40$	ightarrow	$0.45 < x_B < 0.50$		$0.55 < x_B < 0.60$

Bin Migration Corrections: π^{-}

0	$0.30 < x_B < 0.35$		$0.40 < x_B < 0.45$	0	$0.50 < x_B < 0.55$
\bigcirc	$0.35 < x_B < 0.40$	0	$0.45 < x_B < 0.50$		$0.55 < x_B < 0.60$

Bin Migration Corrections: π^+/π^-

0

 $0.10 < x_B < 0.15$

 $0.20 < x_B < 0.25$

\bigcirc 0.30 < x_B < 0.35		$0.40 < x_B < 0.45$	0	$0.50 < x_B < 0.55$
\bigcirc 0.35 < x_B < 0.40	ightarrow	$0.45 < x_B < 0.50$		$0.55 < x_B < 0.60$

MC Corrections

What we measure

Yrad rec kin,acc event

Acceptance Corrections: π^+

Acceptance Corrections: π^-

Acceptance Corrections: π^+/π^-

 $< x_B < 0.15$

0.10

 $0.20 < x_B < 0.25$

0

(Preliminary) Results

Results

Effect of Corrections

$3.0 < Q^2 < 3.5, \quad x_B < 0.32 \pm 0.02, \quad 2.5 < W$

Binned in Q^2

Summary

- targets
- Q^2, x_R, p_T
- Deuterium analysis is approaching completion!
 - Next up is proton analysis and tagged analysis

• SIDIS offers a technique to extract d/u PDF ratio using proton and deuterium

CLAS12 allows us to map pion fragmentation function ratio as functions of

Supplementary

Diffractive ρ^0 **Correction**

1. Direct from quark $q^* + N \rightarrow \pi$

2. VM production $q^* + N \rightarrow \rho \rightarrow \pi$ 3. Diffractive $q^* \to \rho \to \pi$

N

The clasdis generator does not include diffractive VM production... Take data driven approach

 $< \pi$

Rho Correction - Data Driven Approach

- Identify good diffractive rho events in data
 - 2 pion events with at least one pion passing kinematic cuts
 - Require M_x ~ 938 MeV (exclusive) and invariant mass of 2 pion system ~770 MeV
- Then, rotate events about the q-vector of the interaction and beam vector to produce "new" rho events
 - Introduce cos(2*phi) weighting to mimic physics in the q-vector rotation
- Run events through acceptance map
 - Events detected with only one pion then used to estimate number of rho events in data

M_x_rho

M_rho

Kinematical Distributions

Kinematical Distributions

Kinematical Distributions

Systematics

Beam Energy

Electron Sector

ϕ_{π} Matching

ϕ_{π} Matching

