EMC Effect at 11GeV

Advisor: Professor Nadia Fomin Abhyuday Sharda August 8th 2024

This work was supported by U.S. Department of Energy under award number: DE-SC0013615 and JSA Graduate Fellowship

• Introduction & Physics motivation

- Experimental setup and Outline
- Results
- Summary and Future

Electron scattering is our microscope

Credit- Nadia Fomin

 $-q^2 = Q^2 = 4EE'\sin^2\theta/2$ $\nu = E - E'$

- Bjorken x was defined for high energy lepton scattering from protons
- Momentum of the struck quark divided by the momentum of the constituent nucleon
- There are 3 valence quarks that make up a nucleon, so, the naïve expectation is-

Find x.

- Bjorken x was defined for high energy lepton scattering from protons
- Momentum of the struck quark divided by the momentum of the constituent nucleon
- There are 3 valence quarks that make up a nucleon, so, the naïve expectation is-

- Bjorken x was defined for high energy lepton scattering from protons
- Momentum of the struck quark divided by the momentum of the constituent nucleon
- There are 3 valence quarks that make up a nucleon, so, the naïve expectation is-

Find x.

Find x.

'The most complicated thing you can imagine'

EMC Effect at 11GeV

You vs the nucleon she tells you not to worry about

<u>Credit- Quanta Magazine</u>

Why cross-sections?

• Inelastic scattering from a nuclei

$$\frac{d\sigma}{dE'd\Omega} = \frac{\alpha^2 \cos^2\left(\frac{\theta}{2}\right)}{4E^2 \sin^2\left(\frac{\theta}{2}\right)} \left[2F_1(\nu, Q^2) \tan^2\left(\frac{\theta}{2}\right) + F_2(\nu, Q^2) \right] \qquad \text{Structure Functions}$$

• For a proton-

$$2F_1(x) = \frac{F_2(x)}{x} = \sum_i e_i^2 q_i(x) = \frac{4}{9} [u(x) + \bar{u}(x)] + \frac{1}{9} [d(x) + \bar{d}(x)] + \frac{1}{9} [s(x) + \bar{s}(x)]$$
Parton Distribut Functions (PDF)

Callan-Gross relation: $2xF_1(x) = F_2(x)$

- $F_2^A(x) = ZF_2^p(x) + NF_2^n(x)$
- Structure function of a nuclei relative to Deuterium
- Why Deuterium? Loosely bound and assumed to be approximately a proton and neutron

• Discovered by the European Muon Collaboration in 1983

• $F_2^A(x) \neq ZF_2^p(x) + NF_2^n(x)$

EMC Effect at 11GeV

11

 $\frac{dR_{EMC}}{dx}$ ~from 0.35 < x < 0.7

EMC Effect at 11GeV

12

- >1000s of theory papers written
- No consensus after >40 years
- experiments (MeV vs. GeV)
- Guided by experiments, we have hints

• Typical nuclear binding energies are insignificant compared to energies in DIS

Finding Correlating Properties

• No direct relation with A

Finding Correlating Properties

• Scaling with average nuclear density is not completely satisfactory for light nuclei

Theoretical Approaches

- Medium modification
- Multiquark clusters- 6 quark bag?

The SRC Connection

• Short-Range Correlations: Pairs of nucleons with high back-to-back momenta

R_{2N}

Results from the 6 GeV era

- Ran in Hall C@JLab in 2004
- EMC Effect and SRCs closely correlated
- Could they modify the nucleon structure?
- This experiment will address that

- Seems to be a better indicator of the lacksquaresize of the EMC Effect
- Example: ⁹Be vs ⁴He

Local Density

Universe:

Exists

Physicists:

"EMC effect- Where the fast quarks at?"

• Introduction & Physics motivation

• Experimental setup and outline

- Results
- Summary and Future

US National Labs

E12-10-008: Detailed studies of the nuclear dependence of F₂ in light nuclei

- Ran from Sep '22-Feb '23 •
- Investigates EMC effect in numerous nuclei from light to heavy
- Uses ⁴⁰Ca and ⁴⁸Ca which will provide insight into models predict a significant flavor dependence in the EMC effect.
- Comparisons of nuclei which differ by just one nucleon ($^{11}B-^{10}B$, $^{7}Li-^{6}Li$, $^{12}C-^{11}B$) will allow to study isospin dependence
- We measured EMC effect in several light nuclei (conducive to exact theoretical calculations)

Shifts

• UT folks took a lot of shifts as the lab was recovering from a dearth of grad students/users due to the pandemic

The 'counting house' where shift-taking happened

Burcu Dura Hakob Vosk

Name	Institution	Number of Shifts with
ay Sharda	University of Tennessee, Knoxville, TN	
lorean	University of Tennessee, Knoxville, TN	
uran	University of Tennessee, Knoxville, TN	
/oskanyan	Artem Alikhanian National Laboratory (A	

Hall C

High Momentum Spectrometer

1. Drift Chambers

• Provides tracking information

2. Cerenkov

• Particle identification

3. Hodoscopes

- Trigger
- Tracking Efficiency

4. Calorimeter

• Particle identification

JLab Hall C standard equipment manual

CAD Drawing of the HMS detector stack

E12-10-008: Kinematic Coverage

• HMS ran at high Q² to probe internal structure

3

E12-10-008: With Great Energy Comes Great Data

- Higher beam energy+ higher Q² allows us to skip the resonance region
- Can access higher x
- Can get ${}^{3}\text{He}/({}^{2}\text{H+}{}^{1}\text{H})$ without relying heavily on large isoscalar corrections
- Avoids the uncertainty associated with knowledge of the neutron structure function

^σзне^{/σ}D 6 GeV data ³He/D Norm. (1.84%) [']He/(D+p) Norm. (2.1%) 0.9 0.5 0.6 0.7 0.3 0.4 0.2 σ_{3He}/(σ_D+σ_p) ... ³He/(D+p) 11 GeV, 20 degrees 11 GeV, 35 degrees Projected Norm. (2%) E12-10-008 Proposal 0.9 0.5 0.6 0.7 0.2 0.3 0.4

- Introduction & Physics motivation
- Experimental setup and outline
- Results
- Summary and Future

EMC effect- Carbon

- Only statistical uncertainties shown
- Each color represents data at a • particular central momentum

C12/LD2@20.0°

EMC effect- Boron-10

• Only statistical uncertainties shown

EMC effect- Calcium-40

• Only statistical uncertainties shown

- Introduction & Physics motivation
- Experimental setup and outline
- Results
- Summary and Future

• Cross-section model being iterated

\bullet

Status

- Parity violating EMC effect- Studies the flavor dependence of the EMC effect
- BAND & LAD- 'EMC effect of the deuteron'
- What other experiments?
- What other observables could be used to study the EMC effect?

Future

- The origin of the EMC effect is still a mystery
- E12-10-008 will provide several key results:
 - Isospin dependence •
 - Measurement in several light nuclei •
 - More data for comparison with SRCs •
 - Can get ${}^{3}\text{He}/({}^{2}\text{H}+{}^{1}\text{H})$ without relying heavily on large isoscalar corrections •
- We have some results and much more to come!

EMC Results from XEM2

Acknowledgement

Spokespeople: John Arrington (LBL), Nadia Fomin (UTK) & Dave Gaskell (JLab)

Graduate Students:

Cameron Cotton (UVA), Abishek Karki* (MSU), Casey Morean* (UTK), Jordan O'Kronley (UTK), Ramon Ogaz (UTK), Abhyuday Sharda (UTK), Sebastian Vasquez (UCR), Zoe Wolters (UNH) * = Graduated

Other Collaborators:

Miguel Arratia (UCR), Dipangkar Dutta (MSU), Shujie Li (LBL), Dien Nguyen (UTK), Nathaly Santiesteban (UNH), Xiaochao Zheng (UVA), Burcu Duran (NMSU), Tyler Hague (JLab)

Thank you!

Backup

Timing Windows and Reference Time Cuts

 Cuts made to exclude background events

HMS hA+ Good AdcTdc Diff Time PMT 13

HMS hA+ Good AdcTdc Diff Time PMT 5

Nuclear Structure Functions

41

HMS Momentum offset

HMS Momentum offset

• Gaussian fitted

P(true)/_{0.9970} P(nominal)

Hodoscope Calibration

Courtesy of Cameron Cotton

Drift Chamber Calibration

H.dc.1v1.dist {Ndata.H.dc.1v1.dist==1&&H.car.npaSum>1&&H.cal.etot>0.1}

Courtesy of Cameron Cotton

HMS Calorimeter Calibration

- Calorimeter calibrated by varying gain correction for blocks to keep output signals of the same size
- The calibration produces a set of gain constants. Each corresponding to a PMT.

;fDeltaMin ;-10 10

hcal_pos_gai

hcal_neg_gai

; Calibration constants for file hms_replay_cal_4402_-1.root, 763785 events processed

fDeltaMax fBetaMin fBetaMax		ах	fLoTh	r fHiTh	nr							
0.5 1.5 0.865631		1	1.03143									
n_cor=	15.18,	6.41,	8.83,	10.45,	12.98,	12.76,	12.21,	12.22,	9.66,	16.29,	15.81,	13.
_	10.53,	12.43,	7.86,	15.26,	8.65,	5.54,	7.19,	7.79,	8.80,	12.15,	11.31,	12.
	25.29,	14.68,	19.57,	24.81,	18.33,	21.14,	26.86,	22.31,	24.10,	26.40,	19.38,	23.
	33.98,	18.51,	22.78,	19.90,	20.27,	21.05,	23.09,	19.51,	22.85,	23.78,	20.92,	22.
n_cor=	15.83,	16.03,	15.51,	12.17,	10.39,	16.17,	16.46,	21.05,	13.74,	12.15,	11.21,	12.
_	14.65,	14.03,	15.65,	14.38,	16.26,	18.98,	21.23,	18.27,	18.34,	11.49,	17.01,	13.
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.

HMS Calorimeter Calibration

- Saw some wiggles
- Electron not firing the particular PMT due to the threshold voltage being too high
- Is a known issue for the HMS
- Not a big problem for our data •

HMS Calorimeter Calibration

- A single set of gain constants don't work for the whole dataset
- Not obvious why

Physics Background

- In inclusive DIS, only the scattered electron's final state is measured in the spectrometer
- **θ**
- $\nu = E E'$
- M

• $Q^2 \equiv -q^2 \simeq 4EE' \sin^2(\theta/2)$

•
$$W^2 = 2M\nu + M^2 - Q^2$$

•
$$x = x_{Bj} \equiv \frac{Q^2}{2M\nu}$$

Physics Background

E12-10-008: We have results

- Ran for ~2 days in February 2018
- ¹⁰B & ¹¹B also thought to have alpha clustering
- Little nuclear dependence

SRC results

• Correlates with the EMC effect data!

