

First Measurement of Near- and Sub-Threshold *J*/*ψ* Photoproduction off Nuclei

Lucas Ehinger 08/10/24

Slides stolen from Jackson Pybus

Laboratory for Nuclear Science

Proton structure emerges from QCD dynamics

- Proton mass: **938 MeV**
- Higgs contribution to proton mass: **~10 MeV**
- Details of QCD dynamics drive proton structure
- Large fraction of proton mass and spin carried by massless gluons

EMC Effect: Modification of quark content in nuclei

Fewer high-momentum quarks in nuclei

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

How do nuclear systems impact gluon dynamics?

Quarks: EMC Effect Gluons:

Photoproduction of *J*/*ψ* from bound protons

Incoherent photoproduction near *J*/*ψ*threshold sensitive to both nuclear and partonic effects

Photoproduction of *J*/*ψ* from bound protons

Incoherent photoproduction near *J*/*ψ*threshold sensitive to both nuclear and partonic effects

Photoproduction of *J*/*ψ* from bound protons

Hall D SRC-CT Experiment

- Dedicated high-energy photonuclear measurement
- ~40-day measurement of targets ²H, 4He, 12C
- 10.8-GeV electron beam tagged coherent bremsstrahlung
- Final-state particles detected in largeacceptance GlueX spectrometer

…

-
-
-
-
-
-
-
- -

10

Crystal structure creates "coherent" enhancement

GlueX Spectrometer

Incoherent *A*(*γ*, *J*/*ψ p*)*X*

-
- Large-acceptance detector
- Solenoidal magnet:
	- \bullet Good p_T resolution
	- Poor p_z resolution
- Time-of-flight allows particle identification for forward-going charged particles
- Calorimeters allows identification of leptons

Calorimetry allows for *e*/*π* separation

Barrel calorimeter can measure shower evolution

Use photon energy to check "elasticity"

Ali et al. PRL (2019)

Standard GlueX hydrogen running uses kinematic fitting

 $p_{\gamma} = \left(E_{\gamma}, 0, 0, E_{\gamma}\right)$ $p_{target} = (m_p, 0, 0, 0)$

Conservation of 4-momentum **Improved resolution on** final-state momentum

Standard GlueX hydrogen running uses kinematic fitting

 $p_{\gamma} = \left(E_{\gamma}, 0, 0, E_{\gamma}\right)$ **?** $p_{target} = (m_A, 0, 0, 0)$

Conservation of 4-momentum

Poor resolution!

Momentum measurement in GlueX

- Solenoid magnet measure p_\perp and θ
- **poor for forward, high-momentum particles**
- Resolution of final-state dominated by forward particles carrying most of the photon energy

Analysis on the light-front

Nucleon in Nucleus

Parton in Hadron

Parton momentum fraction

 $\chi_B^{}$

Nucleon momentum fraction

$$
\alpha_N \equiv A \frac{E_N - p_N^z}{E_A - p_A^z}
$$

N

Low-momentum nucleon:

 $\alpha_N \sim 1$

Analysis on the light-front

High-momentum nucleon: Large $| \alpha_N - 1 |$

Nucleon in Nucleus

Parton in Hadron

Parton momentum fraction

 χ_B^2

Light-front variables mitigate resolution effects

Nucleon momentum fraction

$$
\alpha_N \equiv A \frac{E_N - p_N^z}{E_A - p_A^z}
$$

 $M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p}_{e^-}^-)$

Second Contract Contrac ⊥ $e^{2}+i\vec{p}$ ⊥ *^e*[−]) 2 $p^{\pm} = E \pm p_{z}$

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p}_{e^-}^-)
$$

\nWell.
\n
$$
p^- = E - p_z
$$

\nConcellation of
\n
$$
p^+ = E + p_z
$$

\n
$$
=
$$

\n
$$
p^+ = E + p_z
$$

\n
$$
=
$$

\

resolution effects

 $e^{2}+i\vec{p}$

Second Contract Contrac ⊥

 $M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p}_{e^-}^-)$

 $p_{\gamma} + p_{2N} = p_{e^+} + p_{e^-} + p_p + p_N$

⊥

2

Assume recoil 4-momentum carried by single nucleon

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p})
$$

$$
p_{\gamma} + p_{2N} = p_{e^{+}} + p_{e^{-}} + p_p + p_N
$$

$$
p_N^{-1} = p_{\gamma}^{-1} + p_{2N}^{-1} - p_{e^{+}}^{-1} - p_{e^{-}}^{-1} - p_{e^{-}}
$$

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p}_{e^-}^-)
$$

$$
p_{\gamma} + p_{2N} = p_{e^{+}} + p_{e^{-}} + p_{p} + p_{N}
$$

$$
p_{N}^{-, \perp} = p_{\gamma}^{-, \perp} + p_{2N}^{-, \perp} - p_{e^{+}}^{-, \perp} - p_{e^{-}}^{-, \perp} - p_{p}^{-, \perp}
$$

$$
p_{N}^{+} = \frac{p_{N, \perp}^{2} + m_{N}^{2}}{p_{N}}
$$

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) (p_{e^+}^+ + p_{e^-}^+) - (\vec{p})
$$

$$
p_{\gamma} + p_{2N} = p_{e^{+}} + p_{e^{-}} + p_{p} + p_{N}
$$

\n
$$
p_{N}^{-, \perp} = p_{\gamma}^{-, \perp} + p_{2N}^{-, \perp} - p_{e^{+}}^{-, \perp} - p_{e^{-}}^{-, \perp} - p_{N}
$$

\n
$$
p_{N}^{+} = \frac{p_{N, \perp}^{2} + m_{N}^{2}}{p_{N}^{-}}
$$

\n
$$
p_{e^{+}}^{+} + p_{e^{-}}^{+} = p_{\gamma}^{+} + p_{2N}^{+} - p_{p}^{+} - p_{N}^{+}
$$

N

$$
p_p^+ - \frac{m_N^2 + p_{tot}^2}{2m_N - p_{tot}^-} - (\vec{p}_{e^+}^{\perp} + \vec{p}_{e^-}^{\perp})^2
$$

\n
$$
M_{e^+e^-}^2 = \left(p_{e^+}^- + p_{e^-}^-\right) \left(p_{e^+}^+ + p_{e^-}^+\right) - \left(\vec{p}_{e^+}^{\perp} + \vec{p}_{e^-}^{\perp}\right)^2
$$
\n

\n\n Assume recoil 4-momentum carried by single nucleon carried by single nucleon information to substitute for "plus" momentum P P

 $M_{e^+e^-}^2 \approx (p_{e^+}^- + p_{e^-}^-) \left(2E_\gamma + 2m_N - p_p^+ \right)$

Simulation shows resolution improvement

New observable greatly improves signal-to-background

Invariant mass spectra show clear $J/\psi \rightarrow e^+e^-$ peaks

Cross section extraction

Energy-averaged cross section compared across nuclei

Cross section extracted as function of beam energy

Combining nuclei improves precision

First observation of sub-threshold *J*/*ψ*!

Subthreshold peak of *J*/*ψ*found to be statistically significant at >3σ

Kinematics give insight into reaction mechanisms

Momentum-transfer gives measure of reaction kinematics

Kinematics give insight into reaction mechanisms

Production of J/ψ below threshold energies shows larger than expected cross section, as well as distortion to larger *αmiss*

dσ(*γA* → *J*/*ψpX*) *dtd*³*pmissdEmiss* $=$ $v_{\gamma i}$ \cdot *dσ dt* $(\gamma p \rightarrow J/\psi p) \cdot S(p_{miss}, E_{miss})$

dσ(*γA* → *J*/*ψpX*) *dtd*³*pmissdEmiss* $=$ $v_{\gamma i}$ \cdot *dσ dt* $(\gamma p \rightarrow J/\psi p) \cdot S(p_{miss}, E_{miss})$ Nuclear spectral function

dσ(*γA* → *J*/*ψpX*) *dtd*³*pmissdEmiss* $=$ $v_{\gamma i}$ \cdot *dσ dt* $(\gamma p \rightarrow J/\psi p) \cdot S(p_{miss}, E_{miss})$ **✓** Nuclear spectral function

dσ(*γA* → *J*/*ψpX*) *dtd*³*pmissdEmiss* $=$ $v_{\gamma i}$ \cdot

Bound proton might not interact with color dipole same as free proton

dσ dt $(\gamma p \rightarrow J/\psi p) =$ *dσ*

(*t*)

Forward cross section; sensitive to gluon density at $x \approx$ *m*2 *J*/*ψ* $s_{\gamma p} - m_N^2$

How does the *J*/*ψ* interact with the proton?

 $(s_{\gamma p}) \times F^2$

Gives mass radius $\langle r_m \rangle =$ 12 Λ

$$
dt \Big|_{t=0} \Big|_{t=0}
$$
\n
$$
G
$$
\n

Two ways to modify the proton

2. Bound protons have **smaller** mass radius: $\Lambda \rightarrow$

1. Bound protons have **greater** gluon density:

$$
\rightarrow (1 - Av) \times \frac{d\sigma}{dt}\bigg|_{t=0}
$$

Larger cross section struggles to explain data

Larger cross section struggles to explain data

51

Smaller-size proton enhances large-*α* cross section

 $\langle r \rangle \rightarrow (1 + Bv) \langle r \rangle$

Smaller-size proton enhances large-*α* cross section

 $\langle r \rangle \rightarrow (1 + Bv) \langle r \rangle$

Conclusions

- New photonuclear measurement gives first measurement of incoherent *J*/*ψ* production at and below threshold energy
- Kinematic distributions suggest possible modification of gluons in bound proton

Backup

High-statistics photonuclear measurement on 4He conditionally approved

12

190-day measurement of a single nucleus; ~1000 J/ψ production events **Measure cross section across full energy range and kinematics**

Optimized radiator geometry maximizes measurement of sub-threshold production

Third Hypothesis: Two-body currents

Proton Nucleon

Two-body currents

"Colored Cluster"

Nucleon

Cluster"

Possible "color correlations" between nucleons?

Particularly sensitive to short-distance configurations!

Improved data will allow detailed test of bound proton structure

Lepton PID: *p*/*E* cuts

Photoproduction from the nucleus

- Nucleus intact in the final-state
- Tells us about the ground-state of the nucleus
- Physics interpretations: Gluon radius of the nucleus, nuclear trace anomaly, nuclear gGPDs

Coherent Photoproduction **Incoherent Photoproduction**

- Nucleus broken-up in the final state
- Tells us about fluctuations in the nucleus + bound nucleons within the nucleus
- Physics interpretations: Gluon content of the bound proton, neutron

Light-front variables

- \bullet Both energy E and longitudinal momentum p_z have poor resolution, but what about combinations of these?
- We can define "plus" and "minus" components of momentum

• Resolution for these variables can be

$$
p^{\pm}=E\pm p_z=\sqrt{p_\perp^2}
$$

$$
=\sqrt{p_\perp^2+p_z^2+m^2}\pm p_z
$$

$$
\sigma_{p^{\pm}}^2 = \left(\frac{p_{\perp}}{E}\right)^2 \sigma_{p_{\perp}}^2 + \left(\frac{p^{\pm}}{E}\right)^2 \sigma_{p_z}^2
$$

 $\bullet\,$ For forward, high-momentum particles, momentum and resolution are dominated by $p_z\colon$

$$
\sigma_{p^+} \approx 2\sigma_{p_z}
$$

$$
p^+ = 2p_z + \dots \qquad p^- \approx
$$

$$
p^{-} \approx \frac{p_{\perp}^{2}}{2p_{z}} + \dots
$$

$$
\sigma_{p^{-}} \approx \left(\frac{p_{\perp}}{2p_{z}}\right) \sigma_{p_{z}}
$$

Light-front momentum gives good basis for analysis

Missing 3-momentum hard to resolve:

 $p_{miss} = p_{meson} + p_p - p_\gamma$

Monte-Carlo simulation shows bin migration of reconstructed variables

Dilepton Mass Reconstruction

• Invariant mass of dilepton can be expressed in light-front momentum:

- Resolution dominated by "plus" component of momentum
- In case of deuteron, we can define missing mass

• Dilepton mass can be reexpressed:

$$
M_{e^+e^-}^2 = (p_{e^+} + p_{e^-})^2 = (p_{e^+}^- + p_{e^-}^-)(p_{e^+}^+ + p_{e^-}^+) - (p_{e^+} + p_{e^-})^2
$$

$$
m_{miss}^2 = (p_{\gamma} + p_d - p_{e^+} - p_{e^-} - p_p)^2 \to m_n^2
$$

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) \left(2E_{\gamma} + m_d - p_p^+ - \frac{m_{miss}^2 + p_{tot,\perp}^2}{m_d - p_{tot}^-} \right) - \left(\vec{p}_{e^+}^{\perp} + \vec{p}_{e^-}^{\perp} \right)^2
$$

2N missing mass exactly $m_N^{}$ for deuterium, but very close for other QE reactions

Fixing $m_{miss} = m_N$ for all nuclei allows substantial constraint on the reaction

Improved mass observable increases resolution on dilepton mass

$$
M_{e^+e^-}^2 = (p_{e^+}^- + p_{e^-}^-) \left(2E_{\gamma} + 2m_N - p_p^+ - \frac{m_N^2 + p_{tot,\perp}^2}{2m_N - p_{tot}^-} \right) - \left(\vec{p}_{e^+}^\perp + \vec{p}_{e^-}^\perp \right)^2
$$

Electron-scattering couples to charge

Quasi-elastic scattering Measure of proton charge distribution Deep-inelastic scattering Measure of quark PDFs

Motivation for high-statistics photonuclear data

- Currently ~1.5 months of nuclear data in Hall D (not including PrimeX)
- Sufficient to establish SRC breakup in high-statistics channels, but further data could be used
	- Study of $|t|$ -dependence of SRC breakup data
	- **• Low-rate channels could be the most interesting**

72

