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Discovering the constituents of matter is 
often viewed as telling us about its structure

However, the emergence of structure is  
a complex process; 

Its understanding goes beyond knowing 
its constituents and their interactions
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Structure Probes Lead to new Frontiers
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Dynamical 
System
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Knowns Unknowns Breakthrough 

Structure Probes
New Sciences,
New Frontiers
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(~1920)
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Structure & 
Dynamics in QCD

Solids Electromagnetism
and Atoms

Structure

2030s
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Special Challenge as QCD 
Matter is Unique

Interactions & structures inextricably mixed 

Observed properties such as mass & spin, 
emerge out of this complex system
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To understand QCD matter we need 
to Image it
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First Elastic scattering show protons 
are not point particles

The Proton
(early 1900s)

1961
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Q2 – resolution power (virtuality of the photon)
s – center-of-mass energy squared
x – the fraction of the nucleon’s momentum carried by the struck quark
y – inelasticity 

e + p → e’ + X
Golden process, utilizing unmatched precision of electromagnetic interactions

Deep Inelastic Scattering reveal 
point like constituents!
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The Proton
(1970s)

The Proton
(early 1900s)

1961 1990, 2004

QCD!

è Imaging the subatomic world was 
key for gaining new understanding
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Improved measurements, incl. polarization 
observables, led to new insights!
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“Today’s” proton is one of the most 
complex QM systems we know
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The Electron-Ion Collider: 
Imaging Nucleons and Nuclei

The Proton
(1970s)

The Proton
(early 1900s)

1961 1990, 2004

The Proton 
(2000s)

The Nucleus 
(2000s)
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Standard Model
Femtography

Dense Gluons

QCD
Science

Origin of Spin

Origin of 
Mass

Nuclei
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Back to basics: Electon Scattering
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     Study the internal structure (and dynamics) of 
               complex objects

Electron Scattering: Nuclear Microscope
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Reaction determined by two variables:
• Q2 = -q2    Interaction-Scale
• xB = Q2/(2mpν)   Dynamics

     Study the internal structure (and dynamics) of 
               complex objects

 using high energy lepton scattering

J

Electron Scattering: Nuclear Microscope
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     Study the internal structure (and dynamics) of 
               complex objects

 using high energy lepton scattering

Q2

100s eV – 100s keV: 
               Material structure

100s MeV – 10s GeV: 
                   Nuclear structure

Nucleus

Nucleons

Quarks

Electron Scattering: Nuclear Microscope
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     Study the internal structure (and dynamics) of 
               complex objects

 using high energy lepton scattering

Q2

100s eV – 100s keV: 
               Material structure

100s MeV – 10s GeV: 
                   Nuclear structure

Energy
=

Resolution !

Nucleus

Nucleons

Quarks

Electron Scattering: Nuclear Microscope
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Why use electrons?
• Probe structure  understood (point particles)
• Electromagnetic interaction understood (QED)
• Interaction is weak (α = 1/137)
• Theory works! 

• First Born Approx / one photon exchange
• Probe interacts only once
• Study the entire nuclear volume

BUT:
• Cross sections are small
• Electrons radiate
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It’s all photons!

• An electron interacts with a nucleus by exchanging a 
single virtual photon

Incident e-

Scattered e-

Virtual photon
Real photon

Real photon:
Momentum q = energy ν
Mass = Q2 = |q|2 - ν2 = 0

Virtual photon:
Momentum q > energy ν
Q2 = - qμqμ = |q|2 - ν2 > 0
Virtual photon “has mass”!
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It’s all photons!

• An electron interacts with a nucleus by exchanging a 
single virtual photon

Incident e-

Scattered e-

Virtual photon
Real photon

Real photon:
Momentum q = energy ν
Mass = Q2 = |q|2 - ν2 = 0

Virtual photon:
Momentum q > energy ν
Q2 = - qμqμ = |q|2 - ν2 > 0
Virtual photon “has mass”!

(ν and ω are both used for energy transfer)
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Electron beams need …

• High energy
• q ~ 2E sin(θe/2)
• Δx < 0.2 fm è q > 1 GeV/c

• High duty cycle (no large beam current variation)
• Reduces accidental coincidences for multiparticle detection
• Reduces detector rates, multiple hits, …

• High intensity (since cross sections are small)
• High resolution to separate nuclear levels
• High polarization (for spin asymmetry measurements)
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(e,e’) Kinematics

31



32

Generic Electron Scattering 
at fixed momentum transfer

� 

dσ
dω

(e,e’): Energy transfer defines physics
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(e,e’): Energy transfer defines physics
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I

III

VI
IV

II

Everything is interesting…
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Program central to all of nuclear science
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...But we will focus on 3 regions

I

III

VI
IV

II
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1. Elastic
• structure of the nucleon / nucleus

• Form factors, charge distributions, spin dependent FF 

I
II

III
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1. Elastic
• structure of the nucleon / nucleus

• Form factors, charge distributions, spin dependent FF 

2. Quasielastic (QE)
• Shell structure

• Momentum distributions
• Occupancies

• Short Range Correlated nucleon pairs
• Nuclear transparency and color transparency

I
II

III
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1. Elastic
• structure of the nucleon / nucleus

• Form factors, charge distributions, spin dependent FF 

2. Quasielastic (QE)
• Shell structure

• Momentum distributions
• Occupancies

• Short Range Correlated nucleon pairs
• Nuclear transparency and color transparency

3. Deep Inelastic Scattering (DIS)
• The EMC Effect and Nucleon modification
• Quark hadronization in nuclei

I
II

III
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Energy vs length

Three cases:
• Low q

• Photon wavelength λ larger  than the nucleon size (Rp)

• Medium q: 0.2 < q < 1 GeV/c
• λ ~ Rp
• Nucleons resolvable

• High q: q > 1 GeV/c
• λ < Rp
• Nucleon structure resolvable

Select spatial resolution and excitation energy independently
• Photon energy ν determines excitation energy
• Photon momentum q determines spatial resolution:

λ ≈


q
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I

• Nuclear charge (proton) radius
• Nuclear Neutron radius
• Nucleon Form-Factors and 

charge densities

Quick Overview: Elastic
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Electrons as Waves

p
h=λ

pcEe ≈

Scattering process is quantum mechanical

De broglie wavelength: 

Electron energy: 

λ resolving “scale”: λ =
2π (197 MeV ⋅ fm)

E
e

ℏ𝑐 = 197	MeV-fm
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Classical Fraunhofer Diffraction

Amplitude of wave at screen:

( ) drrdibr
a

φφ
π

∫ ∫∝Φ
0

2

0

cosexp

Simple analogy for elastic electron scattering….
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Classical Fraunhofer Diffraction

( )( ) 2
12

sin
sin/2

⎟
⎠
⎞⎜

⎝
⎛∝Φ

θ
θλπaJ

2a ≈ 1.22λ
sinθmin

Intensity:

Minima occur at zeroes of 
Bessel function. 1st zero: x = 3.8317

Hence

…some algebra…
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Cross Section ó Charge Form Factor

Example: 30Si(e,e’)
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Charge 
Distribution, 

rCH(r), is a Fourier 
Transform of the 

Charge Form 
Factor, F(q)

Diffraction Measurements of Small Radii
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Diffraction Measurements of Small Radii
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Parity  Violating  Asymmetry

g 0Z
-e -e

+

2

»s

Applications  of  PV  at  Jefferson  Lab

•   Nucleon  Structure  (strangeness)  -- HAPPEX / G0

•   Standard  Model  Tests   (             )  -- e.g.  Qweak

•   Nuclear  Structure  (neutron  density)  :  PREX
Wq

2sin

Applications  of  PV  at  Jefferson  Lab

Weak Interaction: Neutron Distribution

-e
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proton neutron

Electric 
charge

1 0

Weak charge 0.08 1

Clean Probe Couples Mainly to Neutrons
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High Accuracy:

Rn = neutron matter radius
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Invariants:

Lab frame kinematics

(not always detected)

From Intuition to Formalism
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Invariants:

Lab frame kinematics

(not always detected)

From Intuition to Formalism



Mott cross section:

From Intuition to Formalism (Elastic)
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Recoil factor Form factors

Mott cross section:

From Intuition to Formalism (Elastic)
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Recoil factor Form factors

From Intuition to Formalism (Elastic)
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F1, F2: Dirac and Pauli form factors
GE, GM: Sachs form factors (electric and magnetic)

GE(Q2) = F1(Q2) - τF2(Q2)
GM(Q2) = F1(Q2) + F2(Q2)

RL, RT: Longitudinal and transverse response functions

τ = Q2/4M2
(more standard definition of F1 and F2)nu

cl
eo

ns

Recoil factor Form factors

From Intuition to Formalism (Elastic)
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Form Factors: Cross-Sections
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Neutron is negative in its 
center and positive in the 

edge!
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II

• Momentum Densities: Fermi Gas
• Y-Scaling
• Shell Structure and spectroscopic 

factors

Quick Overview: Quasi-Elastic
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Shell 
Model

Fermi 
Gas 

Model

EF Liquid 
Drop 

Model

Chiral 
Perturbation 

Theory*

What is a Nucleus ?

* Should converge to exact solution 62



spectral function S(E,k):
   probability of finding a proton with initial momentum k and 
   energy E in the nucleus
•  factorizes into energy & momentum part

• single particle approximation:
  nucleons move independently from each other 
  in an average potential created by the other nucleons (mean field)

Z(E)

EEF

Z(k)

kkF

occupied      emptyoccupied     empty

nuclear matter:

Independent Particle Shell model (IPSM)

nuclei:

Not 100% accurate, but a good starting point

EF =
kF
2

2mp

63



Fermi gas model:
how simple a model can you make ?

e

e’

pf

qpi

Initial nucleon energy: 
Final nucleon energy: 

Energy transfer:
 

KEi = pi
2
/ 2mp

KEf = pf
2
/ 2mp = (


q +

pi )

2
/ 2mp

ν = KEf − KEi =


q
2

2mp

+


q ⋅

pi

mp
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Expect:
•Peak centroid at ν = q2/2mp + ε
•Peak width 2qpfermi/mp
•Total peak cross section = Zσep + Nσen

Initial nucleon energy: 
Final nucleon energy: 

Energy transfer:
 

KEi = pi
2
/ 2mp

KEf = pf
2
/ 2mp = (


q +

pi )

2
/ 2mp

ν = KEf − KEi =


q
2

2mp

+


q ⋅

pi

mp

Fermi gas model:
how simple a model can you make ?

e

e’

pf

qpi
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R.R. Whitney et al., 
PRC 9, 2230 (1974).

compared to Fermi model:fit parameter kF and ε

-> getting the bulk features

Li C

Pb

500 MeV, 60 degreesEarly 1970ʼs Quasielastic Data

MeV/c MeV

ν GeV 0.300.10 0.30

0.30

ν GeV

ν GeV0.10

0.10
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Scaling
•The dependence of a cross section, in certain kinematic 
regions, on a single variable. 
•scaling validates the scaling assumption.
•Scale-breaking indicates new physics.

•At moderate Q2 and x>1 we expect to see evidence for 
y-scaling, indicating that the  electrons are scattering 
from quasifree nucleons
• y = minimum momentum of struck nucleon

•At high Q2 we expect to see evidence for x-scaling, 
indicating that the electrons are scattering from quarks.
•x = Q2/2mν = fraction of nucleon momentum carried by struck 
quark (in infinite momentum frame)
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Assumption:  scattering takes place from a quasi-free proton 
or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the 
momentum transfer:
y ≈ -q/2 + mν/q (nonrelativistically)

IF the  scattering is quasifree, then F(y) is the integral over all 
perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).
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y-scaling: inclusive scattering from 3He
dσ

/d
Ω

dE
’

F(
y,q

) (
G

eV
/c

)-1

ν (GeV) y (GeV/c)

3He(e,e’) at 
various Q2

Assumption:  scattering takes place from a quasi-free proton or neutron in the 
nucleus.
y is the momentum of the struck nucleon parallel to the momentum transfer:
y ≈ -q/2 + mν/q (nonrelativistically)

IF the  scattering is quasifree, then F(y) is the integral over all perpendicular 
nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).



Assumptions & Potential Scale 
Breaking Mechanisms

• No Final State Interactions (FSI)
• No internal excitation of (A-1)
• Full strength of Spectral function can be 

integrated over at finite q
• No inelastic processes (choose y<0)
• No medium modifications (discussed later)
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3He3He

IronIron

Cr
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s 
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dσ
/d
Ω
dE
’

Cr
os

s 
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n 
dσ
/d
Ω
dE
’

3

31 -1

-1

0

0
y (GeV/c)

F(
y)

F(
y)

Y-scaling works!

Energy transfer ν (GeV)



• Many-Body Hamiltonian:

• Mean-Field Approximation:

Results in an “atom-like”
shell model:

H = p2

2mNi=1

A

∑ + v2body i, j( )
i< j=1

A

∑ + v3body i, j,k( )
i< j<k=1

A

∑ + ...

H = p2

2mNi=1

A

∑ + V i( )
i=1

A

∑

E. Wigner, M. Mayer, and J. Jenson, 
1963 Nobel Prize

• Ground state energies
• Excitation Spectrum
• Spins
• Parities
• … 

But what about the Shell Model?
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And then there were four 
(response functions, that is)

(When you include electron and 
proton spin, there are 18!)

(And if you scatter from a polarized spin-1 
target, there are 41.  Double Yikes!!)

Each R now depends on more variables
R = R(q, ω, pmiss, Emiss)

(e,e’p)
Spectroscopy
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Hall-A: High-Resolution Spectrometers 
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16O(e,e’p) and shell 
structure

p1/2 p3/2

s1/2
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16O(e,e’p) and shell 
structure

p1/2 p3/2

s1/2

1p1/2, 1p3/2 and 1s1/2 shells 
visible

Momentum distribution as 
expected for l = 0, 1

p1/2

p3/2

Missing Momentum
0 300-300

Fissum et al, PRC 70, 034606 (2003) 76



Z
/IP
SM

IPSM 100%

NIKHEF

65%

Z/
IP
SM

But we do not see enough protons!
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But we do not see enough protons!
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