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Discovering the constituents of matter is
often viewed as telling us about its structure

However, the emergence of structure is
a complex process;

Its understanding goes beyond knowing
its constituents and their interactions



Structure Probes Lead to new Frontiers



Electromagnetism
and Atoms

Structure

X-ray Diffraction

Solid state physics
Molecular biology
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Special Challenge as QCD
Matter is Unique
Interactions & structures inextricably mixed

Observed properties such as mass & spin,
emerge out of this complex system




To understand QCD matter we need
to Image it
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First Elastic scattering show protons
are not point particles
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Deep Inelastic Scattering reveal
point like constituents!

e+p>e +X
Golden process, utilizing unmatched precision of electromagnetic interactions

electron

Q? — resolution power (virtuality of the photon)
s — center-of-mass energy squared
x — the fraction of the nucleon’s momentum carried by the struck quark

y — inelasticity
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= Imaging the subatomic world was
key for gaining new understanding

& 7 1990, 2004
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Improved measurements, incl. polarization
observables, led to new insights!
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“Today’s” proton is one of the most
complex QM systems we know

15



The Electron-lon Collider:
Imaging Nucleons and Nuclei

2777 1990, 2004
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Back to basics: Electon Scattering
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Electron Scattering: Nuclear Microscope

Goal: Study the internal structure (and dynamics) of
complex objects
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Electron Scattering: Nuclear Microscope

Goal: Study the internal structure (and dynamics) of
complex objects
Means: using high energy lepton scattering

Reaction determined by two variables:
e Q?=-9g%2 Interaction-Scale
* xg=Q?%(2m,v) Dynamics
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Electron Scattering: Nuclear Microscope

Goal: Study the internal structure (and dynamics) of
complex objects
Means: using high energy lepton scattering

100s eV — 100s keV: 100s MeV — 10s GeV:
Material structure Nuclear structure
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Electron Scattering: Nuclear Microscope

Goal: Study the internal structure (and dynamics) of
complex objects
Means: using high energy lepton scattering

100s eV — 100s keV: 100s MeV — 10s GeV:
Material structure Nuclear structure

Nucleus
\_/_\

Energy
— Nucleons
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Why use electrons?

* Probe structure understood (point particles)
 Electromagnetic interaction understood (QED)

* Interaction is weak (a0 =1/137)

* Theory works!
* First Born Approx / one photon exchange

* Probe interacts only once
e Study the entire nuclear volume

BUT:
* Cross sections are small

e Electrons radiate
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It’s all photons!

* An electron interacts with a nucleus by exchanging a
single virtual photon

Scattered e

Real photon . /
//_f-" . Incident e Virtual photon
»

» .'I..’. SV
fad®.® C ’o o /o{:o.'.o' .\0
;.!.."C. » »...,...o
wo':. .' ‘.‘ et
e LY
Real photon: ASCDL

Momentum ¢ = energy v

Virtual photon:
Mass = 0> = |¢g/> -v*=0 P

Momentum g > energy v
O*=-q,4"" g -v*>0
Virtual photon “has mass”!

28



It’s all photons!

* An electron interacts with a nucleus by exchanging a
single virtual photon

Scattered e

Real photon . /
//,.T'.\ Incident e Virtual photon
»

2R 0. —
':‘."»:.' Y /.{:..-'o"\»‘
‘.‘..".., RN Y »
“::o' .0/. »‘..’.'.o‘
. y ! Yoy =2"H
s EOROA
Real photon: Newn*

Momentum g = energy v

Virtual photon:
Mass = 0> = |¢g/> -v*=0 P

Momentum g > energy v

O*=-q,4"" g -v*>0
Virtual photon “has mass”!

(vand o are both used for energy transfer)
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Electron beams need ...

High
* g~ 2FE sin(6./2)
e Ax<02fm=>¢g>1GeV/c
High (no large beam current variation)

* Reduces accidental coincidences for multiparticle detection
* Reduces detector rates, multiple hits, ...

High (since cross sections are small)
High to separate nuclear levels
High (for spin asymmetry measurements)
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(e,e’) Kinematics
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(e,e’): Energy transfer defines physics

PROTON
Elastic

DEEP INELASTIC
“ QUARKS”

Generic Electron Scattering
at fixed momentum transfer
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(e,e’): Energy transfer defines physics

Elastic

do
dw

Giant
resonance

l NUCLEUS

Quasielastic.

A *
N
DEEP INELASTIC
s EMC #

| 1
2 2 W
Q Q% 4 300 MeV
2m

PROTON
A

N *
DEEP INELASTIC
“ QUARKS”
L

W



Everything is interesting...

NUCLEUS

DEEP INELASTIC
A\} EMC '
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Program central to all of nuclear science

Quark-Gluon Structure
Of Nucleons and Nuclei

Correlations

n-radii: N = Z

Hypernuclei
Hadrons in- medium

Precise  Eggfective NN (+ HN) force
few-nucleon

Exotic mesons calculations

and baryons




...But we will focus on 3 regions

NUCLEUS

DEEP INELASTIC
A\} EMC '
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NUCLEUS

DEEP INELASTIC

1. Elastic

 structure of the nucleon / nucleus
* Form factors, charge distributions, spin dependent FF

W EMC "
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DEEP

1. Elastic

 structure of the nucleon / nucleus
* Form factors, charge distributions, spin dependent FF

2. Quasielastic (QE)

e Shell structure
e Momentum distributions
* Occupancies

* Short Range Correlated nucleon pairs
* Nuclear transparency and color transparency

NUCLEUS

W EMC "

INELASTIC
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NUCLEUS

DEEP INELASTIC
W EMC "

1. Elastic

 structure of the nucleon / nucleus
* Form factors, charge distributions, spin dependent FF

2. Quasielastic (QE)

e Shell structure
e Momentum distributions
* Occupancies

* Short Range Correlated nucleon pairs
* Nuclear transparency and color transparency

3. Deep Inelastic Scattering (DIS)
e The EMC Effect and Nucleon modification
e Quark hadronization in nuclei
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Energy vs length

Select spatial resolution and excitation energy independently
* Photon energy v determines excitation energy
* Photon momentum g determines spatial resolution: i n

Three cases:

* Lowgq
* Photon wavelength A larger than the nucleon size (R,)

* Medium g: 0.2 <g <1 GeV/c
* A~R,
* Nucleons resolvable
* Highg:g>1GeV/c
* AL<R,
* Nucleon structure resolvable
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Quick Overview: Elastic

Giant
resonance

Elastic NUCLEUS

A

l Quasielastic

¥
N DEEP INELASTIC
A\Y EMC ¥74

2 2 W
Q Q% 4 2300 MeV
2m 2m

* Nuclear charge (proton) radius

* Nuclear Neutron radius

* Nucleon Form-Factors and
charge densities
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Electrons as Waves

Scattering process is guantum mechanical

h

De broglie wavelength: A=—
P

Electron energy: E, = pc
hc = 197 MeV-fm

_ 2m(197 MeV - fm)

A resolving “scale”: A

E

e
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Simple analogy for elastic electron scattering....

~

‘raction

Classical Fraunhofer Di

—
Incident ——»
Light

Screen

Amplitude of wave at screen:

a?lm

D o I Jexp(ibr cos ¢ ydodr
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Classical Fraunhofer Diffraction

Intensity:
J, ((27ma/ 2A)sin@)

1/1(0)

sin @

Minima occur at zeroes of
Bessel function. 1t zero: x = 3.8317

...some algebra...

1.224

sin @

Hence PIES

min
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Example: 39Si(e,e’)

spectrometer

scattered e-

Cross Section < Charge Form Factor

Photon transferred to the
nucleus (h q,hw)

1st minimum = 1.3 fm!
=2 0=32.8°

Electron energy = 454.3 MeV
=2 A=2.73fm

Calculated radius = 3.07 fm

Measured rms radius = 3.19 fm



Diffraction Measurements of Small Radii

—— Experiment

- Mean l'icld Theory

20\
|

Distribution, @
rcu(r), is a Fourier g
Transform of the

Charge Form

Factor, F(q)




Diffraction Measurements of Small Radii

pectrometé q

—— Experiment

Mean I'icld Theory

10s — 100s
Million Dollar
Machines




Weak Interaction: Neutron Distribution

Parity Violating Asymmetry

* Nucleon Structure (strangeness) -- HAPPEX / GO
« Standard Model Tests () -- e.g. Qweak

- - Nuclear Structure (neutron density) : PREX
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Weak Interaction: Neutron Distribution

1—4sin’* 0, —
dffj +(dff] 2742 | F(0)
dQ ), dQ ), ~ 0

Fp(Q?): 2%8PDb
Charge Form Factor

), ()
), \dQ), G0 { . Fy (Q7)
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Weak Interaction: Neutron Distribution

1—4sin* @6, —
dffj +(dff] 2742 b F(0)
aQ ), \dQ), ~ 0

Fo(Q2): 208PD

i), "Lon)
@), \de), _ G0’ { F,(Q")

proton neutron Charge Form Factor
Electric 1 0
charge
Weak charge  0.08 1

Quw=2T; —4Q.sin’§, =2-(—3) = -1 ~ —0.99

Qu=2T; —4Q, sin’ 0, = 2 5 —45sin”29° ~ 1—0.94016 = 0.0598



Weak Interaction: Neutron Distribution

dﬁj _(daj
dQ ), aQ), G.0’

dffj +(dffj 2ma/2
), \da),

Fp(Q?): 2%8PDb
Charge Form Factor

High Accuracy:

R, = neutron matter radius
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From Intuition to Formalism

Lab frame kinematics




From Intuition to Formalism

Lab frame kinematics




From Intuition to Formalism (Elastic)

Mott cross section: Feg
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From Intuition to Formalism (Elastic)

Form factors

95



From Intuition to Formalism (Elastic)

Form factors
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From Intuition to Formalism (Elastic)

Form factors

2 2 0
Uﬂ@{ [FE(QQ) + MKQFQZ(QZ)] + fw[ﬂ(@?) + £F5(Q%))* tan’ 5}

0
H——T + 2T tan2 éGlzw (Qz)]
2 0

Q%) + (2(172 + tan? 5) RT(Qz)]

I, F,: Dirac and Pauli form factors

Gg, Gyt Sachs form factors (electric and magnetic)

. Ge(0%) = F\(Q?) - tF,(0?) T = Q¥4M?

GM(Q2) = FI(Q2) + FZ(Q2) (more standard definition of F; and F5)
Ry, Ry Longitudinal and transverse response functions

hucleons

Y



Form Factors: Cross-Sections

d Q Mott+recoil ]
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Electric charge distribution

p(b) [fm~?]

2.0 Proton

1.5

i =) EM charge
radius!

0.5
0 b [fm]

p(b) [fm ]
b [fm]
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Neutron is negative in its
center and positive in the
edge!

p(b) [fm™]




Quick Overview: Quasi-Elastic

NUCLEUS

DEEP INELASTIC
W EMC '

w

* Momentum Densities: Fermi Gas
* Y-Scaling VAVAVAVAV
e Shell Structure and spectroscopic

factors
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What is a Nucleus ?

Fermi \h@ﬁ/EF Liquid

\ 2 ]
Gas 2 Drop

Model @ Model
Chiral “‘%‘

Perturbation
Theory: w>@<

* Should converge to exact solution



Independent Particle Shell model (IPSM)

single particle approximation:
nucleons move independently from each other
in an average potential created by the other nucleons (mean field)

spectral function S(E,k):

probability of finding a proton with initial momentum k and
energy E in the nucleus

factorizes into energy & momentum part

nuclear matter:
Z(E)

nuclei:

i
Not 100% accurate, but a good starting point 63



Fermi gas model:

how simple a model can you make ?

Initial nucleon energy: L€ =p; /2m,
Final nucleon energy: KE,=p*/2m, =

-2 - -
Energy transfer: [ KE, - KE, = q__ . 4P
m
p

(Z]+131.)2/2m

m,

P

64



Fermi gas model:

how simple a model can you make ?

Initial nucleon enerqgy: [N PR

Final nucleon energy: KE,=p’/2m =(G+p,) /2m,

-2

Energy transfer: [ KE, - KE, = q__ . 4P
m

m,

p

Expect:

‘Peak centroid at v=¢%*2m, +¢

*Peak width 2gpg.milm,

* Total peak cross section = Zo,, + No,

65



Early 1970's Quasielastic Data 500 MeV, 60 degrees |
! R.R. Whitney et al.,
-> getting the bulk features PRC9, 2230 (1974).

do/dQ/dE’ /A [nb/sr/GeV]
do/dQ/dE’/A [nb/sr/GeV]

%95 910 vGev *? % 030

ke MeV/c
L 169
“2¢ 224
24Mg 235
©Ca 251
natpj 260
89y 254
natGp 260
“®iT1g 265
L 202pp, 265

0.30 compared to Fermi model:fit parameter krand €

do/dQ/dE’ /A [nb/sr/GeV]

0.25




Scaling

The dependence of a cross section, in certain kinematic
regions, on a single variable.

validates the scaling assumption.
indicates new physics.

AT moderate Q? and x>1 we expect to see evidence for
, indicating that the electrons are scattering
from quasifree nucleons

= minimum momentum of struck nucleon

At high Q2 we expect to see evidence for
indicating that the electrons are scattering from quarks.

= Q?/2mv = fraction of nucleon momentum carried by struck
quark (in infinite momentum frame)
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Assumption: scattering takes place from a quasi-free proton
or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the

momentum transfer:
y = -q/2 + mv/q (nonrelativistically)

IF the scattering is quasifree, then F () is the integral over all
perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).
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y-scaling: inclusive scattering from 3He

10% T T T T
'__.\ i 100 N | | ! ! | | | | - 1
S\e™ — o
o 10° a T /'\ 10 - ;‘/ -
Lﬂ " :\r‘ et ] Q 4 ~
a 10+ r::—,_ mh——— - > 1+ \;:‘;‘:"& -1
| =24 - Q )
i/ 0.1+ a5 -
% 10 jf; 434 iy ] \Q_D/ ;-“f“}
N s “ 3 ' ~ urr ghe* 1
ot o He(e ') at > T
] various Q?2 & ooorp Ay 1
IO‘;)LO Ol— | — __l- | J-O ; m 0.0001 . 1 1 | X 1 A 1 | o J
) 2 2.5 3. 35 -10 -08 -06 0.0 2 0.4
v (GeV) v (GeV/c)
_ g <P _ 1 dF(y)
F(y) = mamssy K n(k) = —
(Z6p+Nér) 2ry  dy

Assumption: scattering takes place from a quasi-free proton or neutron in the
nucleus.

is the momentum of the struck nucleon parallel to the momentum transfer:

~ -q/2 + mv/q (nonrelativistically)

IF the scattering is quasifree, then F(y) is the integral over all perpendicular
nucleon momenta (honrelativistically).

Goal: extract the momentum distribution n(k) from F(y).




Assumptions & Potential Scale
Breaking Mechanisms

No Final State Interactions (FSI)
No internal excitation of (A-1)

Full strength of Spectral function can be
integrated over at finite g

No inelastic processes (choose y<0)
No medium modifications (discussed later)
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Y-scaling works!
L
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But what about the Shell Model?

. I\/Iany-Body Hamiltonian°

repulsive core

short range attraction

Coulomb repulsion
_ 4+ adds to proton well
“~<_ potential

Results in an “atom-like”

shell model:

* Ground state energies Proton

* Excitation Spectrum mt'?mm
e Spins e e
* Parities

([
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(e,e’p)

Spectroscopy

dbo
dﬂedQPdEmISde
vrrRLT cos(¢) + vrrRor cos(2¢) ]

= Komots [ vi.RL +vrRT +

And then there were four

(response functions, that is) where
K = (phase space)
oMoty = (relativistic Rutherford scattering)

(When you include electron and v = v (¢,w) (electron kinematics)
proton spin, there are 18!) Each R now depends on more variables
R =R(q, W, Priss, Emiss)

(And if you scatter from a polarized spin-1
target, there are 41. Double Yikes!!)



Hall-A: High-Resolution Spectrometers
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=

Rl L/l 1°0O(e,e’p) and shell

MEC+IC+Central
MEC+IC+Central

aCEal  Sstructure

—h —h — —
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100

o) 300 »
Missing Momentum

1p1/2, 1p3/2 and 1sy/;, shells
visible

. /|\ a1 Momentum distribution as
40 60 80 100 120 expected for /= 0, 1

E_(MeV)
Fissum et al, PRC 70, 034606 (2003)




But we do not see enough protons!

VALENCE PROTONS

10’ 102
target mass —»
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But we do not see enough protons!
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