# EIC Physics: Experimental Perspective (1)





Hen Lab

Laboratory for Nuclear Science @

## **Fundamental Structure of Matter**



#### Fundamental Structure of Matter constituents



Discovering the constituents of matter is often viewed as telling us about its structure

However, the emergence of structure is a complex process;

Its understanding goes beyond knowing its constituents and their interactions

Discovering the constituents of matter is often viewed as telling us about its structure

# However, the emergence of structure is <u>a complex process;</u>

Its understanding goes beyond knowing its constituents and their interactions

Discovering the constituents of matter is often viewed as telling us about its structure

# However, the emergence of structure is a complex process;

Its understanding goes beyond knowing its constituents and their interactions

#### Structure Probes Lead to new Frontiers

| Dynamical<br>System | Fundamental<br>Knowns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unknowns                              | Breakthrough<br>Structure Probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New Sciences,<br>New Frontiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solids              | Electromagnetism<br>and Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Structure                             | X-ray Diffraction (~1920)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solid state physics<br>Molecular biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Vrystal<br>Generation<br>Generation<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Generation<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal<br>Crystal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Universe            | General Relativity<br>Standard Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantum Gravity,<br>Dark matter, Dark | Large Scale Surveys<br>CMB Probes (~2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Precision<br>Cosmology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | The second secon | energy. <i>Structure</i>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | And the second s |
| Nucleons            | Perturbative QCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Non-perturbative                      | DIS (1970s) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Structure &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and Nuclei          | Quarks and Gluons<br>$\mathcal{L}_{QCD} = \overline{\psi}(i\partial - gA)\psi - \frac{1}{2}\text{tr} F_{\mu\nu}F^{\mu\nu}$ blue green green antiblue gluon blue gluon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QCD. Structure                        | Electron-ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Breakthrough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Special Challenge as QCD Matter is Unique

Interactions & structures inextricably mixed

Observed properties such as mass & spin, emerge out of this complex system



# To understand QCD matter we need to Image it

# First Elastic scattering show protons are not point particles



# Deep Inelastic Scattering reveal point like constituents!

#### $e + p \rightarrow e' + X$

Golden process, utilizing unmatched precision of electromagnetic interactions



- Q<sup>2</sup> resolution power (virtuality of the photon)
- s center-of-mass energy squared
- x the fraction of the nucleon's momentum carried by the struck quark y inelasticity

# → Imaging the subatomic world was key for gaining new understanding



# Improved measurements, incl. polarization observables, led to new insights!



# "Today's" proton is one of the most complex QM systems we know







#### Femtography





#### Origin of Spin



#### Back to basics: Electon Scattering

**Goal:** Study the internal structure (and dynamics) of complex objects









Goal: Study the internal structure (and dynamics) of complex objects
 Means: using high energy lepton scattering

Reaction determined by two variables:

- $Q^2 = -q^2$  Interaction-Scale
- $x_B = Q^2/(2m_pv)$  Dynamics





Study the internal structure (and dynamics) of Goal: complex objects Means: using high energy lepton scattering

#### 100s eV – 100s keV: Material structure







## Why use electrons?

- Probe structure understood (point particles)
- Electromagnetic interaction understood (QED)
- Interaction is weak ( $\alpha = 1/137$ )
  - Theory works!
    - First Born Approx / one photon exchange
  - Probe interacts only once
  - Study the entire nuclear volume

#### BUT:

- Cross sections are small
- Electrons radiate



# It's all photons!

 An electron interacts with a nucleus by exchanging a single virtual photon



Real photon: Momentum q = energy v Mass =  $Q^2$  =  $|q|^2$  -  $v^2 = 0$ 



Momentum q > energy v  $Q^2 = -q_{\mu}q^{\mu} = |q|^2 - v^2 > 0$ Virtual photon "has mass"!

# It's all photons!

 An electron interacts with a nucleus by exchanging a single virtual photon



Real photon: Momentum q = energy v Mass =  $Q^2$  =  $|q|^2$  -  $v^2 = 0$ 



(v and  $\omega$  are both used for energy transfer)

## Electron beams need ...

- High energy
  - $q \sim 2E \sin(\theta_e/2)$
  - $\Delta x < 0.2 \text{ fm} \Rightarrow q > 1 \text{ GeV/c}$
- High duty cycle (no large beam current variation)
  - Reduces accidental coincidences for multiparticle detection
  - Reduces detector rates, multiple hits, ...
- High intensity (since cross sections are small)
- High resolution to separate nuclear levels
- High polarization (for spin asymmetry measurements)

## (e,e') Kinematics

# (e,e'): Energy transfer defines physics



#### Generic Electron Scattering at fixed momentum transfer

## (e,e'): Energy transfer defines physics



#### Everything is interesting...



## Program central to all of nuclear science



## ...But we will focus on 3 regions




#### 1. Elastic

- structure of the nucleon / nucleus
  - Form factors, charge distributions, spin dependent FF



- 1. Elastic
  - structure of the nucleon / nucleus
    - Form factors, charge distributions, spin dependent FF

### 2. Quasielastic (QE)

- Shell structure
  - Momentum distributions
  - Occupancies
- Short Range Correlated nucleon pairs
- Nuclear transparency and color transparency



### 1. Elastic

- structure of the nucleon / nucleus
  - Form factors, charge distributions, spin dependent FF

### 2. Quasielastic (QE)

- Shell structure
  - Momentum distributions
  - Occupancies
- Short Range Correlated nucleon pairs
- Nuclear transparency and color transparency
- 3. Deep Inelastic Scattering (DIS)
  - The EMC Effect and Nucleon modification
  - Quark hadronization in nuclei

# Energy vs length

Select spatial resolution and excitation energy independently

- Photon energy v determines excitation energy
- Photon momentum q determines spatial resolution:

 $\lambda \approx \frac{\hbar}{q}$ 

#### Three cases:

- Low *q* 
  - Photon wavelength  $\lambda$  larger than the nucleon size ( $R_p$ )
- Medium q: 0.2 < q < 1 GeV/c
  - $\lambda \sim R_{\rm p}$
  - Nucleons resolvable
- High q: q > 1 GeV/c
  - $\lambda < R_p$
  - Nucleon structure resolvable

## Quick Overview: Elastic



- Nuclear charge (proton) radius
- Nuclear Neutron radius
- Nucleon Form-Factors and charge densities



### **Electrons as Waves**

#### Scattering process is quantum mechanical

#### De broglie wavelength:





Electron energy:  $\hbar c = 197$  MeV-fm

$$E_e \approx pc$$

 $\lambda$  resolving "scale":

$$\lambda = \frac{2\pi (197 \text{ MeV} \cdot \text{fm})}{E_e}$$

Simple analogy for elastic electron scattering....

### **Classical Fraunhofer Diffraction**



Amplitude of wave at screen:

$$\Phi \propto \int_{0}^{a} \int_{0}^{2\pi} \exp(ibr\cos\phi) r d\phi dr$$

## **Classical Fraunhofer Diffraction**



#### Intensity:

$$\Phi^2 \propto \left(\frac{J_1((2\pi a/\lambda)\sin\theta)}{\sin\theta}\right)^2$$

Minima occur at zeroes of Bessel function. 1<sup>st</sup> zero: x = 3.8317

...some algebra...

Hence 
$$2a \approx \frac{1.22\lambda}{\sin \theta_{min}}$$

## Example: <sup>30</sup>Si(e,e')



### **Cross Section** $\Leftrightarrow$ **Charge Form Factor**



1<sup>st</sup> minimum = 1.3 fm<sup>-1</sup>  $\rightarrow \theta = 32.8^{\circ}$ 

Electron energy = 454.3 MeV  $\rightarrow \lambda = 2.73 \text{ fm}$ 

Calculated radius = 3.07 fm

Measured rms radius = 3.19 fm

# Diffraction Measurements of Small Radii





## **Diffraction Measurements of Small Radii**



### Parity Violating Asymmetry



Applications of PV at Jefferson Lab

- Nucleon Structure (strangeness) -- HAPPEX / G0
- Standard Model Tests  $(\sin^2 \theta_W)$  -- e.g. Qweak
- Nuclear Structure (neutron density) : PREX

Z<sup>0</sup> of Weak Interaction: Clean Probe Couples Mainly to Neutrons

F<sub>W</sub>(Q<sup>2</sup>): <sup>208</sup>Pb Weak Form Factor

$$A = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{R} - \left(\frac{d\sigma}{d\Omega}\right)_{L}}{\left(\frac{d\sigma}{d\Omega}\right)_{R} + \left(\frac{d\sigma}{d\Omega}\right)_{L}} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}} \left[\underbrace{1 - 4\sin^{2}\theta_{W}}_{\approx 0} - \frac{F_{W}(Q^{2})}{F_{P}(Q^{2})}\right]$$

 $F_{\rm p}(Q^2)$ : <sup>208</sup>Pb Charge Form Factor

Z<sup>0</sup> of Weak Interaction: Clean Probe Couples Mainly to Neutrons

 $F_{\rm W}(Q^2)$ : <sup>208</sup>Pb Weak Form Factor



|                                     |                                                            | X                           |
|-------------------------------------|------------------------------------------------------------|-----------------------------|
| $rac{G_F Q^2}{2\pi lpha \sqrt{2}}$ | $\left[\underbrace{1-4\sin^2\theta_W}_{\approx 0}-\right]$ | $\frac{F_W(Q^2)}{F_P(Q^2)}$ |
|                                     |                                                            |                             |

Clean Probe Couples Mainly to Neutrons

|                    | proton | neutron |
|--------------------|--------|---------|
| Electric<br>charge | 1      | 0       |
| Weak charge        | 0.08   | 1       |

 $F_{\rm p}(Q^2)$ : <sup>208</sup>Pb Charge Form Factor

 $egin{aligned} Q_{\mathsf{w}} &= 2\,T_3 - 4\,Q_\epsilon\,\sin^2 heta_{\mathsf{w}} &= 2\cdotig(-rac{1}{2}ig) = -1\,pprox\,-0.99 \ Q_{\mathsf{w}} &= 2\,T_3 - 4\,Q_\epsilon\,\sin^2 heta_{\mathsf{w}} &= 2\,rac{1}{2} - 4\,\sin^229^\circ\,pprox\,1 - 0.94016\,=\,0.05984 \ Q_{\mathsf{w}} &= 2\,rac{1}{2} - 4\,\sin^229^\circ\,pprox\,1 - 0.94016\,=\,0.05984 \ Q_{\mathsf{w}} &= 2\,rac{1}{2} - 4\,\sin^229^\circ\,pprox\,1 - 0.94016\,=\,0.05984 \ Q_{\mathsf{w}} &= 2\,rac{1}{2} - 4\,\sin^229^\circ\,pprox\,1 - 0.94016\,=\,0.05984 \ Q_{\mathsf{w}} &= 2\,rac{1}{2} - 4\,\sin^229^\circ\,pprox\,1 - 0.94016\,=\,0.05984 \ Q_{\mathsf{w}} &= 0.05984 \ Q_{\mathsf{w}$ 

Z<sup>0</sup> of Weak Interaction: Clean Probe Couples Mainly to Neutrons

F<sub>W</sub>(Q<sup>2</sup>): <sup>208</sup>Pb Weak Form Factor

$$A = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{R} - \left(\frac{d\sigma}{d\Omega}\right)_{L}}{\left(\frac{d\sigma}{d\Omega}\right)_{R} + \left(\frac{d\sigma}{d\Omega}\right)_{L}} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}} \left[\underbrace{1 - 4\sin^{2}\theta_{W}}_{\approx 0} - \frac{F_{W}(Q^{2})}{F_{P}(Q^{2})}\right]$$

 $F_{\rm p}(Q^2)$ : <sup>208</sup>Pb Charge Form Factor

High Accuracy:

$$\frac{dA}{A} = 3\% \quad \rightarrow \quad \frac{dR_n}{R_n} = 1\%$$

 $R_n$  = neutron matter radius

### From Intuition to Formalism

#### Lab frame kinematics



#### Invariants:

$$p^{\mu}p_{\mu} = M^{2} \qquad p_{\mu}q^{\mu} = M\omega$$
$$Q^{2} = -q^{\mu}q_{\mu} = |\vec{q}|^{2} - \omega^{2} \qquad W^{2} = (q^{\mu} + p^{\mu})^{2} = p'_{\mu}p'^{\mu}$$

### From Intuition to Formalism

#### Lab frame kinematics

$$k'^{\mu} = (E', \vec{k}')$$

$$q^{\mu} = (\omega, \vec{q})$$

$$p'^{\mu} = (E, \vec{k})$$

$$q^{\mu} = k^{\mu} - k'^{\mu}$$

$$p^{\mu} = (M, \vec{0})$$

### Invariants:

$$p^{\mu}p_{\mu} = M^{2} \qquad \qquad p_{\mu}q^{\mu} = M\omega$$
$$Q^{2} = -q^{\mu}q_{\mu} = |\vec{q}|^{2} - \omega^{2} \qquad W^{2} = (q^{\mu} + p^{\mu})^{2} = p'_{\mu}p'^{\mu}$$

Mott cross section:

$$\sigma_{M} = \frac{\alpha^{2} \cos^{2}\left(\frac{\theta_{e}}{2}\right)}{4E^{2} \sin^{4}\left(\frac{\theta_{e}}{2}\right)}$$







 $\label{eq:formula} \begin{array}{l} \begin{tabular}{ll} \label{eq:formula} F_1, F_2: \mbox{ Dirac and Pauli form factors} \\ G_E, G_M: \mbox{ Sachs form factors (electric and magnetic)} \\ G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2) & \tau = Q^2/4M^2 \\ G_M(Q^2) = F_1(Q^2) + F_2(Q^2) & (\mbox{more standard definition of } F_1 \mbox{ and } F_2) \\ R_L, R_T: \mbox{ Longitudinal and transverse response functions} \end{array}$ 

### Form Factors: Cross-Sections

$$\frac{\varepsilon}{\tau}G_{E}^{2}+G_{M}^{2}=\frac{\varepsilon(1+\tau)}{\tau}\left[\frac{d\sigma}{d\Omega}\left(\frac{d\sigma}{d\Omega}\right)_{Mott+recoil}\right]$$

$$\sigma_{R}$$

$$\sigma_{R}$$

$$G_{E}^{2}=tg\beta$$



Neutron is negative in its center and positive in the edge!



## Quick Overview: Quasi-Elastic



- Momentum Densities: Fermi Gas
- Y-Scaling
- Shell Structure and spectroscopic factors



### What is a Nucleus ?



## Independent Particle Shell model (IPSM)

- single particle approximation:
- nucleons move independently from each other
- in an average potential created by the other nucleons (mean field)
- spectral function *S*(*E*,*k*):
- probability of finding a proton with initial momentum k and energy E in the nucleus
- factorizes into energy & momentum part
- nuclear matter:



Not 100% accurate, but a good starting point

### Fermi gas model: how simple a model can you make ?

Initial nucleon energy: Final nucleon energy:

Energy transfer:

$$\begin{split} & KE_{i} = p_{i}^{2} / 2m_{p} \\ & KE_{f} = p_{f}^{2} / 2m_{p} = (\vec{q} + \vec{p}_{i})^{2} / 2m_{p} \\ & v = KE_{f} - KE_{i} = \frac{\vec{q}^{2}}{2m_{p}} + \frac{\vec{q} \cdot \vec{p}_{i}}{m_{p}} \end{split}$$



#### 65

**p**f

### Fermi gas model: how simple a model can you make ?

Initial nucleon energy: Final nucleon energy:

Energy transfer:

$$KE_{i} = p_{i}^{2} / 2m_{p}$$

$$KE_{f} = p_{f}^{2} / 2m_{p} = (\vec{q} + \vec{p}_{i})^{2} / 2m_{p}$$

$$v = KE_{f} - KE_{i} = \frac{\vec{q}^{2}}{2m_{p}} + \frac{\vec{q} \cdot \vec{p}_{i}}{m_{p}}$$

e

р

Expect: •Peak centroid at  $v = q^2/2m_p + \varepsilon$ •Peak width  $2qp_{\text{fermi}}/m_p$ •Total peak cross section =  $Z\sigma_{\text{ep}} + N\sigma_{\text{en}}$ 



500 MeV, 60 degrees

R.R. Whitney et al., PRC 9, 2230 (1974).



# Scaling

• The dependence of a cross section, in certain kinematic regions, on a single variable.

•scaling validates the scaling assumption.

Scale-breaking indicates new physics.

•At moderate Q<sup>2</sup> and x>1 we expect to see evidence for y-scaling, indicating that the electrons are scattering from quasifree nucleons

y = minimum momentum of struck nucleon

At high Q<sup>2</sup> we expect to see evidence for x-scaling indicating that the electrons are scattering from quarks.
 x = Q<sup>2</sup>/2mv = fraction of nucleon momentum carried by struck quark (in infinite momentum frame)

Assumption: scattering takes place from a quasi-free proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:

 $y \approx -q/2 + m\nu/q$  (nonrelativistically)

IF the scattering is quasifree, then F(y) is the integral over all perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).

$$F(y) = rac{\sigma^{ ext{exp}}}{(Z ilde{\sigma}_p + N ilde{\sigma}_n)} \cdot K$$

$$n(k) = -\frac{1}{2\pi y} \frac{dF(y)}{dy}$$

### y-scaling: inclusive scattering from <sup>3</sup>He



Assumption: scattering takes place from a quasi-free proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:  $y \approx -q/2 + mv/q$  (nonrelativistically)

IF the scattering is quasifree, then F(y) is the integral over all perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution n(k) from F(y).

Assumptions & Potential Scale Breaking Mechanisms

- No Final State Interactions (FSI)
- No internal excitation of (A-1)
- Full strength of Spectral function can be integrated over at finite q
- No inelastic processes (choose y<0)</li>
- No medium modifications (discussed later)



# But what about the Shell Model?

• Many-Body Hamiltonian:

$$H = \sum_{i=1}^{A} \frac{p^2}{2m_N} + \sum_{i < j=1}^{A} v_{2body}(i, j) + \sum_{i < j < k=1}^{A} v_{3body}(i, j, k) + \dots$$



• Mean-Field Approximation:

$$H = \sum_{i=1}^{A} \frac{p^2}{2m_N} + \sum_{i=1}^{A} V(i)$$

- Results in an "atom-like"
- shell model:
  - Ground state energies
  - Excitation Spectrum
  - Spins

Parities



E. Wigner, M. Mayer, and J. Jenson, **1963 Nobel Prize**
$$\frac{d^{6}\sigma}{d\Omega_{e}d\Omega_{p}dE_{miss}d\omega} = K\sigma_{Mott} [v_{L}\mathbf{R}_{L} + v_{T}\mathbf{R}_{T} + v_{LT}\mathbf{R}_{tT}\cos(2\phi)]$$
where
$$K = (\text{phase space})$$
where
$$K = (\text{phase space})$$

$$\sigma_{Mott} = (\text{relativistic Rutherford scattering})$$

$$v = v (q, \omega) (\text{electron kinematics})$$
Each R now depends on more variables
$$R = R(q, \omega, p_{miss}, E_{miss})$$

### Hall-A: High-Resolution Spectrometers



#### P<sub>1/2</sub> P<sub>3/2</sub>



## <sup>16</sup>O(e,e'p) and shell structure

#### 1/2 P3/2



# <sup>16</sup>O(e,e'p) and shell structure



 $1p_{1/2},\,1p_{3/2}$  and  $1s_{1/2}$  shells visible

Momentum distribution as expected for /= 0, 1

Fissum et al, PRC <u>70</u>, 034606 (2003)

### But we do not see enough protons!



## But we do not see enough protons!

