Modification of Quark-Gluon Distributions in Nuclei by Correlated Nucleons Pairs

Andrew Denniston (MIT)

In Collaboration with: Tomas Jezo, Aleksander Kusina, Fred Olness, Or Hen

August 8th, 2024

Partons in Hadrons

Hadrons in the Nucleus

Partons in the Nucleus

Partons in Hadrons

Kovarik PRD (2015)

Partons in the Nucleus

Nuclear Dependance

Segarra PRD (2021)

Partons in the Nucleus

Cause of the EMC Effect?

Traditional Nuclear Effects

Medium Modification

Cause of the EMC Effect?

Medium Modification

Cause of the EMC Effect?

Reactions

All Nucleons Modified Approach

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

All Nucleons Modified Approach

Depend on A

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

All Nucleons Modified Approach

$$xf_i^{p(A)}(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

Kovarik PRD (2015)

Kovarik PRD (2015)

• Pairs with small separation

- Pairs with small separation
- High relative momentum compared to k_F

- Pairs with small separation
- High relative momentum compared to k_F
- Significant fraction of the nuclear spectral function

- Pairs with small separation
- High relative momentum compared to k_F
- Significant fraction of the nuclear spectral function
- Correlated with the EMC Effect

Schmookler Nature (2019)

Comparing SRCs with the EMC Effect

Schmookler Nature (2019)

Comparing SRCs with the EMC Effect

Comparing SRCs with the EMC Effect

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + \frac{C_p^A}{f_i^{SRC p}(x)} \right] + \frac{C_p^A}{f_i^{SRC p}(x)} \right]$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + \frac{C_p^A}{L_p^p(x)} f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Depend on A

SRC Abundancies

A

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + \frac{A - Z}{A} \left[\left(1 - C_n^A \right) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

 $f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_i^{p(A)}(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$

Details of Fit:

- 1. Minimize χ^2
- 2. Cut out non-DIS kinematics
- 3. Satisfy Sum Rules
- 4. Full Theoretical Calculations
- 5. DGLAP Evolve PDFs
- 6. All PDFs are defined for $x \in (0,1)$

$$\int_{0}^{1} dx \, x f_{i}^{A}(x,Q) = 1 \qquad \int_{0}^{1} dx \, f_{u_{v}}^{A}(x,Q) = \frac{A+Z}{A} \qquad \int_{0}^{1} dx \, f_{d_{v}}^{A}(x,Q) = \frac{A+N}{A}$$

$$F_2^{A,Z}(x,Q) = \sum_i C_i(x,Q) \otimes f_i^{A,Z}(x,Q)$$

World Data to Fit:

Q > 1.3 GeV W > 1.7 GeV

Fit Over Wide x_B Range

Drell-Yan and W Production are Well Described

Fit Result:

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$

How Many SRCs do we expect?

Nuclear Physics Extracted from Parton Measurements

Nuclear Physics Extracted from Parton Measurements

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$

Proton-Neutron Pairs Dominate

Proton-Neutron Pairs Dominate

Equal number of SRC protons and neutrons.

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$

Nuclear PDF and SRC PDF

Nuclear PDF and SRC PDF

 Q^2 10 GeV²

Nuclear PDF and SRC PDF

 $Q^2 = 10 \; GeV^2$

Structure of SRC Nucleons

Tagged Experiments Might Measure this Observable

• SRC Parameterization produces a good fit.

$\chi^2/N_{ m data}$	$rac{\chi^2_{ m tot}}{N_{ m DOF}}$
All Modified	0.85
SRC	0.80

- SRC Parameterization produces a good fit.
- Nuclear physics extracted from parton measurements.

- SRC Parameterization produces a good fit.
- Nuclear physics extracted from parton measurements.
- pn-dominance naturals emerges from the fit.

- SRC Parameterization produces a good fit.
- Nuclear physics extracted from parton measurements.
- pn-dominance naturals emerges from the fit.
- The SRC Structure is heavily modified.

End

Extra
Cut out data with non-DIS Kinematics

Segarra PRD (2021)

Previous PDF fits

World Data of Medium Modification

Segarra PRD (2021)

Spectral Function

 $S_A(k,E) = S_A^{MF}(k,E) + S_A^{SRC}(k,E)$

Original Parametrization

Depend on A

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

• Schmookler Nature (2019)

Fitting to World Data

Segarra PRD (2021)

Fit using pn-dominance

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + \frac{C_p^A}{P} f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + \frac{C_n^A}{C_n^A} f_i^{SRC n}(x) \right]$$

Two Fits:

- Let C_p^A and C_n^A vary independently
- Force pn-dominance:
 #Protons in SRC = #Neutrons in SRC

Fits Result:

$\chi^2/N_{ m data}$	$\left rac{\chi^2_{ m tot}}{N_{ m DOF}} ight $
reference	0.85
baseSRC	0.80
pnSRC	0.82

Enforcing pn-dominance does <u>not</u> affect the results of the fit.

Enforcing pn-dominance does <u>not</u> affect the results of the fit.

Beyond the SRC-EMC Relation

87

$$xf_i^{p(A)}(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

90

Depend on A

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

$$xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$$

$$c_{k}(A) = c_{k,0} + c_{k,1}(1-A^{-c_{k,2}})$$

$$xf_{u_{v}}^{A}(x)$$

$$u_{v}$$

92

$$xf_{i}^{p(A)}(x) = c_{0}x^{c_{1}}(1-x)^{c_{2}}e^{c_{3}x}(1+e^{c_{4}}x)^{c_{5}}$$
$$c_{k}(A) = c_{k,0} + c_{k,1}(1-A^{-c_{k,2}})$$

Incorporating SRCs

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A - Z \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^p(x) \right] + A$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

New Fit:

- $f_i^p(x)$ comes from nCTEQ15 free proton
- $f_i^{SRC p}(x)$ is fit without A dependence:

$$xf_i^{SRC p}(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

- SRC Abundancies (C_p^A, C_n^A) are fit for each nucleus
- $f_i^n(x)$ and $f_i^{SRC n}(x)$ are the isospin symmetric partners to the proton PDFs

Fit Result:

$\chi^2/N_{ m data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$rac{\chi^2_{ m tot}}{N_{ m DOF}}$
Mean-Field	0.85	0.97	0.88	0.72	1408	0.85
SRC	0.84	0.75	1.11	0.41	1300	0.80

Schmookler Nature (2019)

Schmookler Nature (2019)

Schmookler Nature (2019)

Partons in the Nucleus

Incorporating SRCs

