Short-Range Correlations in Exotic Nuclei Preliminary results on SRC study in ¹⁶C and ¹²C using inverse

Preliminary results on SRC study in ¹⁶C and ¹²C using inverse kinematics at GSI-FAIR

Christine Qi, 08/2024

Nuclear Short-Range Correlations

Nucleon momentum

Patsyuk et al., Nat. Phys. 17, 693-699 (2021)

- Factorization into SRC and A-2 system
- Dominance of p-n over pp SRC pairs

How excess neutrons in neutron-rich nuclei form SRC pairs?

(e,e'N) experiment

Consistent with n-p dominance of SRC pairs

High-momentum proton fraction increased in neutronrich nuclei

SRC fraction for neutrons saturates in asymmetric nuclei

M. Duer et al. (CLAS), Nature 2018.

1.6

Why unstable beams?

- Reach large asymmetry with unstable nuclei
- Disentangle mass and N/Z dependence with nucleus along isotopic chain

Quenching of spectroscopic factors dependency on proton-neutron asymmetry

- Phenomenological model of SRC contribution to the quenching of spectroscopic factor
- Further SRC in neutronrich nuclei study required

Inverse kinematics at R³B: exclusive measurement of SRC break-up Beam information 16C beam, 1.25 GeV/u 12C beam, 1.25 GeV/u Knockout Intensity: 1×10^5 pps Proton 16**C** lon Fragment 14**B** Target Proton P-p pairs: P-n pairs: Knockout Proton ¹²C(p,2p)¹⁰B ¹²C(p,2p)¹⁰Be Recoil nucleon, ¹⁶C(p,2p)¹⁴B ¹⁶C(p,2p)¹⁴Be

Residual fragment identification And tracking

Residual fragment identification for ¹²C data

Quasi-elastic event identification by A-1 system tagging

 $p_{miss} = p_3 + p_4 - p_{tg}$

Back-to-back correlation between initial proton and residual A-1 fragment system

Residual fragment identification for ¹⁶C data

(p,2p) tagging

¹⁶C(p,2p)¹⁵B quasi-elastic events selection

(p,2p) tagging

¹⁶C(p,2p)¹⁵B

(p,2p) tagging (p,2p) missing mass squared: 0.6-1.4 GeV²/c⁴

SRC identification in ¹²C

SRC selection through A-2 system tagging

(p,2p) tagging

Mean-field and SRC channels for A-2 tagged events

- SRC identification through A-2 system tagging
 - e.g.: ¹²C(p,2p)¹⁰B
- Mean-field (p,2p) with A-1 system nucleon evaporation
 - ${}^{12}C(p,2p){}^{11}B^*; {}^{11}B^* -> {}^{10}B + n$
- SRC pair
 - ¹²C(p,2p)¹⁰B, with recoil neutron

Quasi-elastic event selection through exclusive missing mass selection

$p_n = p_{beam} + p_{tg} - p_{A-2} - p_1 - p_2$

On-shell recoil nucleon mass selection

Quasi-elastic event selection through exclusive missing mass selection

¹²C(p,2p)¹⁰B SRC selection

(p,2p) selection Exclusive missing mass squared: 0.5 ~ 1.1 GeV²/c⁴

¹²C(p,2p)¹⁰B SRC selection

 $|t| > 0.8 \text{ GeV}^2$ Proton multiplicity 2 Exclusive missing mass squared: 0.5 ~ 1.1 GeV²/c⁴ LC α: 0.5-0.8

¹²C(p,2p)¹⁰B identified p-n SRC pair angular correlation

Back-to-back p-n pair

SRC factorization from A-2 system

p-n pair relative momentum v. Fragment angle 23

16C data analysis

¹²C/¹⁶C data with A-1 tagging show consistent kinematic distribution

(p,2p) selection

Exclusive missing mass selection with A-2 tagging

|t| > 0.8 GeV² Proton multiplicity 2 (p,2p) missing mass squared: 0.6-1.4 GeV²/c⁴

¹⁶C kinematics with A-2 tagging

Significantly less SRC contribution to ¹⁶C kinematics with ground ¹⁴B state

(P,2p) selection Exclusive missing mass squared: 0.5 ~ 1.1 GeV²/c⁴

Upcoming analysis

Upcoming analysis: γ spectrum associated with excited residual A-1/A-2 system

¹²C(p,2p)¹¹B with Mean-field selection

¹²C(p,2p)¹⁰B with SRC selection

Upcoming analysis: pp SRC pair identification

N

Summary

- Current analysis on ¹²C and ¹⁶C
 - Quasi-elastic identification for A-1/A-2 tagged events
 - Initial identification of p-n SRC pairs in ¹²C
 - ¹⁶C(p,2p)¹⁴B dominated by mean-field kinematics
 - Excited states of ¹⁴B
- Upcoming analysis
 - Identification of p-p SRC pairs
 - Excitation energy spectrum study for A-1/A-2 system

Thank you!

Credits to R3B collaboration

Backup slides

SRC identification

¹²C(p,2p)¹⁰B SRC selection

(p,2p) opening angle [degree]

(p,2p) selection Exclusive missing mass squared: 0.5 ~ 1.1 GeV²/c⁴

¹²C(p,2p)¹⁰B SRC kinematics

GCF simulation

Proton multiplicity 2 Exclusive missing mass squared: 0.5 ~ 1.1 GeV²/c⁴

¹²C(p,2p)¹⁰B

¹²C(p,2p)¹⁰B, neutron veto

(p,2p) missing momentum > 400 MeV/c

|t| > 0.8 GeV² roton multiplicity 2

LC *α***: 0.5-0.8**

¹²C(p,2p)¹⁰B SRC selection

(p,2p) opening angle [degree]

¹²C(p,2p)¹⁰B SRC selection

100

80

60

20

120

100

80

60

40

20

0.1

0.2

0.1

0.2

|t| > 0.8 GeV² **Proton multiplicity 2 Exclusive missing mass squared:** 0.5 ~ 1.1 GeV²/c⁴

α: 0.6-0.7

0.3

0.4

0.2

0.5

0.7

0.6

0.8

20

0.1

α: 0.7-0.8

Missing momentum [GeV²/c⁴]

Neutron veto for mean-field event rejection

¹⁶C(p,2p)¹⁴B opening angle with neutron veto dominated by mean-field contribution

Opening angle [degree]

