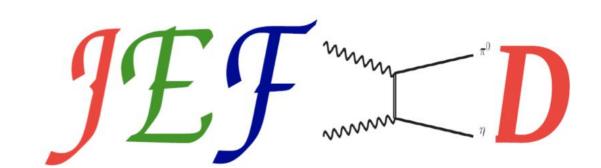
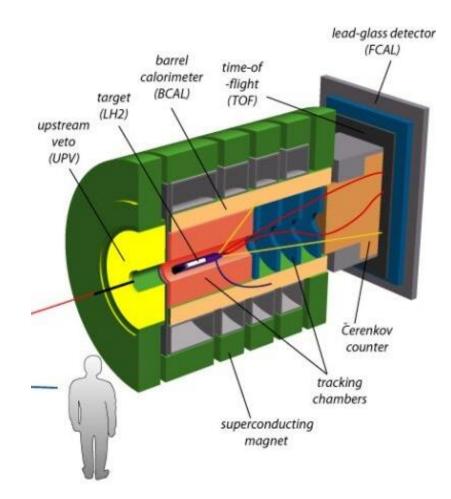
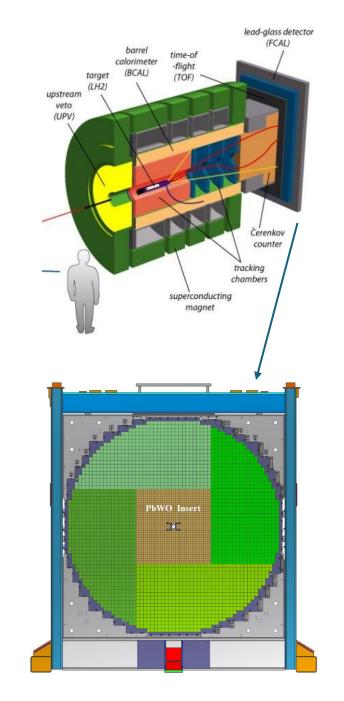
GlueX FCAL Upgrade Lead Tungstate Calorimeter for JEF Experiment

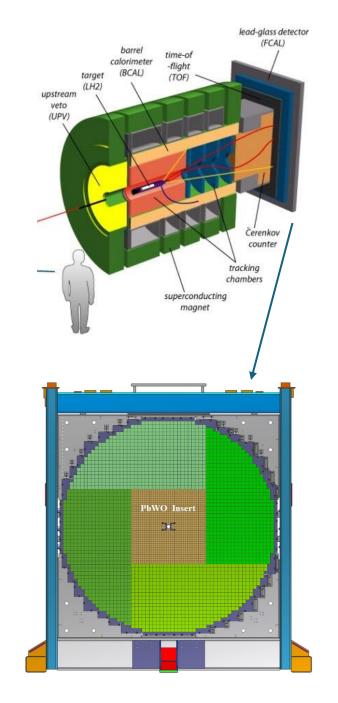

Olivia Nippe-Jeakins


The Jefferson Eta Factory Experiment

- Goal: study decay modes of η/η'
 - Measure kinematics of more common η decays to learn more about quark masses
 - Measure kinematics of rare decays to constrain chiral perturbation theory models
 - Search for decays that violate conservation laws
 - $\circ~$ Search for dark matter particles
- Final states all include π° and/or $\pmb{\gamma}$


The Jefferson Eta Factory Experiment

 Current challenges: inability to localize center/distinguish between EM showers from η decays

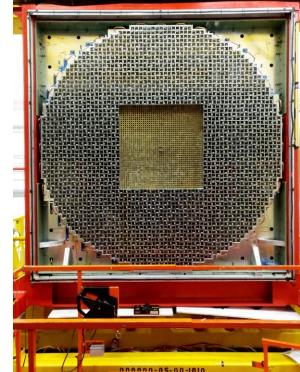

The Jefferson Eta Factory Experiment

- Current challenges: inability to localize center/distinguish between EM showers from η decays
- What we need: improved granularity and resolution >> new eta calorimeter (ECAL) insert

The Jefferson Eta Factory Experiment

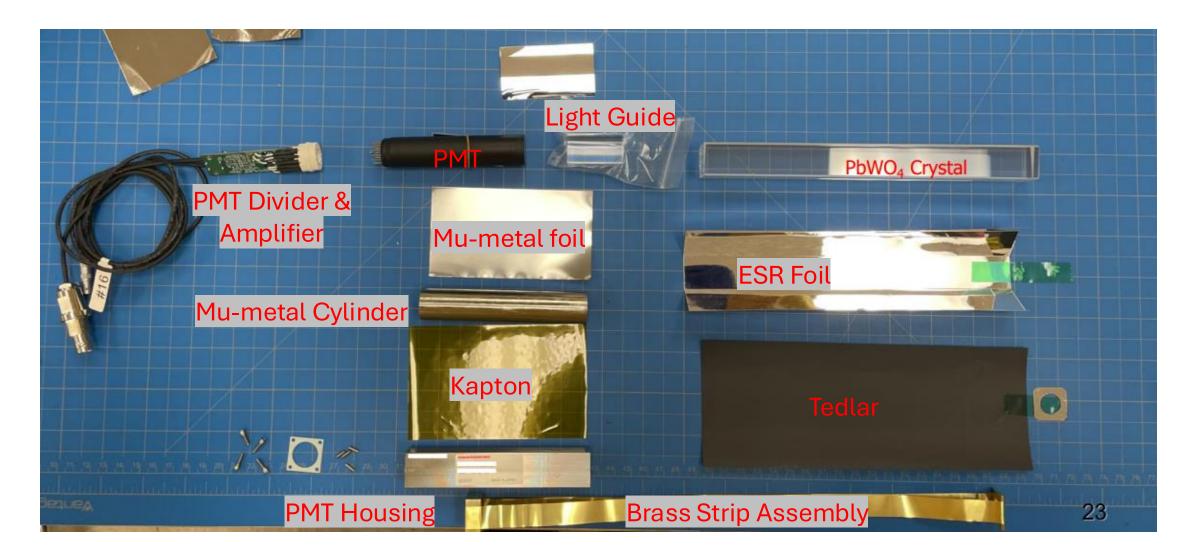
- Current challenges: inability to localize center/distinguish between EM showers from η decays
- What we need: improved granularity and resolution >> new eta calorimeter (ECAL) insert
- Proof of concept: successful prototype used in PrimEx-eta experiment

ECAL Insert

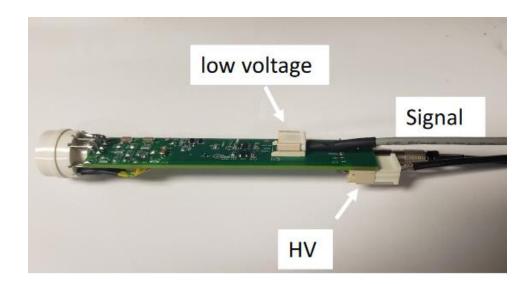

432 Pb-glass (4x4x40 cm³) FCAL modules are replaced by 1596 PbWO₄ crystal (2x2x20cm³) modules

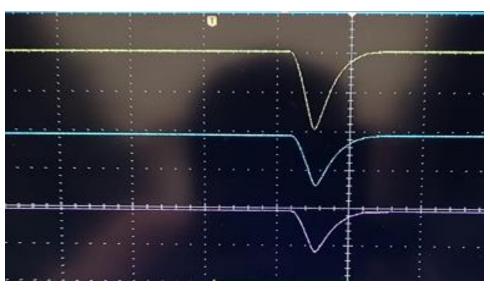
The new ECAL modules will:

- Improve energy and position resolutions by a factor of 2
- Improve granularity to reduce shower overlaps by a factor of 4
- Improve radiation resistance by a factor of 10


ECAL Modules

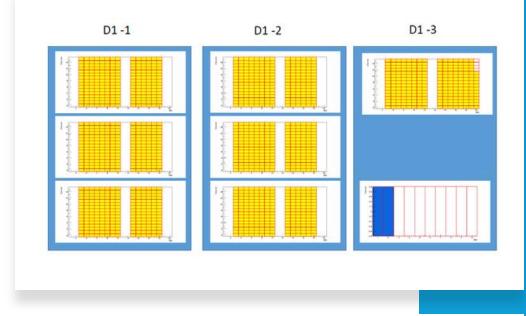
- Lead-tungstate (PbWO₄) crystals are scintillators – they convert ionizing radiation into light
- Photomultiplier Tubes (PMTs): devices that convert light into a measurable electric current
- The PMT housing and mu-metal foils will help reduce the effects of the external magnetic field on the PMT
- A high voltage divider is connected to high voltage, low voltage, and signal cables

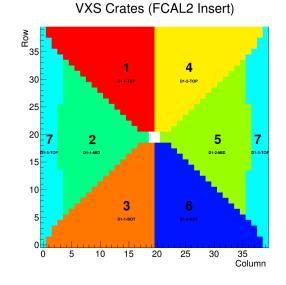


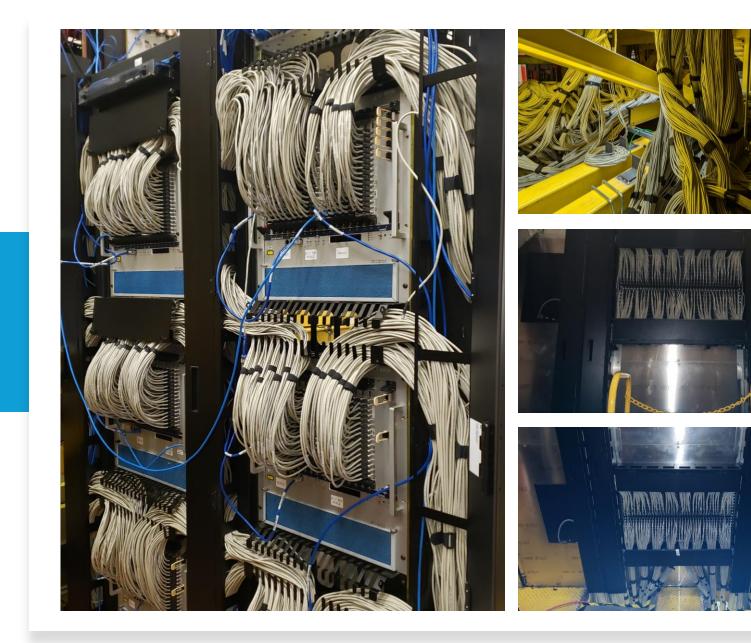

ECAL Modules - Build Your Own!

PMT Testing

- Each calorimeter module was tested using the Light Monitoring System (LMS):
 - 1. Activating an LED into the front of the module
 - 2. Recording and digitizing data
 - 3. Analyzing the signal via an oscilloscope
- Modules must be tested row by row to ensure consistent results across all 1596 output channels

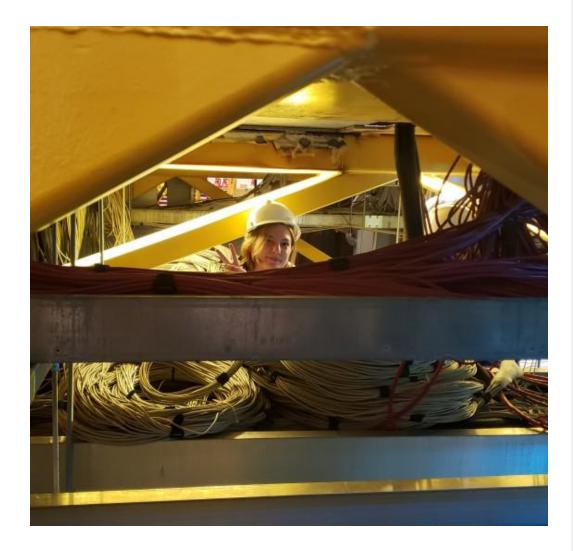

PMT Testing


- All PMT testing was documented
- Common issues included:
 - Soldering defects
 - Component mix-ups (dividers, cables, etc.)
 - Broken connectors
- Some outliers remain but within reason


163	-18	-16	409	92				
164	-17	-16	411	132				
165	-16	-16	409	140	bad connector p	atch, panel side	(Au 0.0)	corrected
166	-15	-16	408	97				
167	-14	-16	409	134				
168	-13	-16	409	176				
169	-12	-16	408.2	236				
170	-11	-16	409	73				
171	-10	-16	408.4	151				
172	-9	-16	409	76				
173	-8	-16	408	92				
174	-7	-16	409	69				
175	-6	-16	409	147				
176	-5	-16	409.1		jumper fixed			
177	-4	-16	408.8	78				
178	-3	-16	409.6	81				
179	-2	-16	408.3	106				
180	-1	-16	408.3	79				
181	1	-16	408.5	30	bad connection	- fixed		
182	2	-16	408.4	111.5				
183	3	-16	409.7	188				
184	4	-16	409	241				
185	5	-16	409	189				
186	6	-16	409	217				
187	7	-16	409	212				
188	8	-16	408.3	95				
189	9	-16	408.2	185				
190	10	-16	409	32				
191	11	-16	408.5	95				
192	12	-16	409	23				
193	13	-16	409	179				
194	14	-16	410.5	191				
194	15	-16	409	68				
195	16	-16	408.1	53				
197	17	-16	408.4		jumper fixed			
198	18	-16	400.4	31	jumper ixeu			
199	19	-16	408.4	150				
200	20	-16	400.4	189				
200	-20	-15	409	152				
201	-19	-15	409	148				
202	-18		400.3	57				
203	-10	-15		113				
		-15	410.7					
205	-16	-15	409	130				
206	-15	-15	409	136				
207	-14	-15	408.4	237				
208	-13	-15	409	171				
000		-15	409	257				
209	-12							
209 210 211	-11	-15	409	214				

Cable Installation

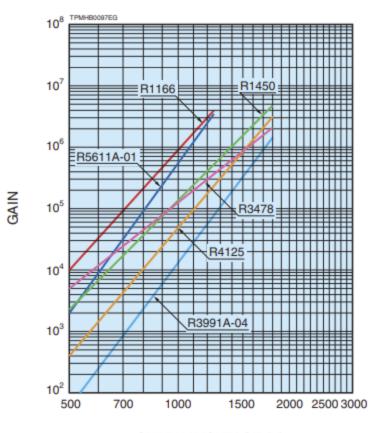
- 7 cable crates
 - Divided into +/- Top, Mid, and Bottom
- Bundles from each crate were split and reorganized to connect to the patch panel
- All cables were first connected to the VXS crates and pulled under and through the detector platform to connect to the ECAL modules
- Excess length was stored underneath the detector



Cable Installation

Next Steps

- Finish PMT testing for the top half of the detector
- Software
- Start running in January 2025!



Extra Slides - PMT

Hamamatsu R4125

		0	Spectral resp	Cathode characteristics			Anode characteristics										
		Out-	On other		8	4	Blue	6	Anode to	8	6	9	Dark c	urrent ወ	Time	e respo	nse 🛈
Tube	Type No.	line		Curve		Lumi- nous	sensitivity		cathode	Lumi-	Radiant	Gain			Rise	Transit	T.T.S.
diameter	INO.	No.	range	code	Тур.	Two		Тур.	supply	Typ.	Тур.	Тур.	Тур.	Max.	time		Тур.
							(US 5-50)		voltage						Тур.	Тур.	(FWHM)
			(nm)		(%)	(µA/lm)	Typ.	(mA/W)	(V)	(A/Im)	(A/W)		(nA)	(nA)	(ns)	(ns)	(ns)

	R1166	6	300 to 650	A-D	26	110	10.5	85	1000 20	110	8.5 × 104	1.0×10^{6}	1	5	2.5	27	2.8
	R1450	6	300 to 650	A-D	27	115	11.0	88	1500 😕	200	1.5 × 10⁵	1.7×10^{6}	3	50	1.8	19	0.76
19 mm	R3478	0	300 to 650	A-D	27	115	11.0	88	1700 🕕	200	1.5 × 10⁵	1.7×10^{6}	10	300	1.3	14	0.36
(3/4")	R3991A-04	8	300 to 650	A-E	12	30	4.5	38	1500 26	10	1.3 × 104	$3.3 imes 10^5$	0.1	10	1.0	10	_
	R4125	6	300 to 650	A-D	27	115	11.0	88	1500 2	100	7.7 × 104	$8.7 imes 10^5$	10	50	2.5	16	0.85
	R5611A-01	8	300 to 650	A-D	26	90	10.5	85	1000 26	50	4.7 × 10 ⁴	5.5 × 105	3	20	1.3	12	0.8

SUPPLY VOLTAGE (V)