Nuclear structure studies using inverse kinematics experiments

Julian Kahlbow

Photonuclear Reactions Workshop Aug 10, 2024

You heard on Wednesday ...

Quasielastic scattering = Tool to study nuclear structure

Slide from Or

Nuclear correlations across scales

Signs of correlations

Electron scattering is limited to stable nuclei

Only ~300/3,000 (known) nuclei are stable

Nuclear structure studies in exotic nuclei

Flipping reaction kinematics provides powerful access to structure!

Flipping reaction kinematics provides powerful access to structure!

- 1. Inverse kinematics: nuclear structure using hadronic probes
- 2. Measure *all* reaction particles
- 3. Final state tagging

Correlations in exotic nuclei

Correlations in exotic nuclei

Disadvantages: Medium effects

Incoming proton and outgoing protons interact with other nucleons (initial and final state interactions)

- → disturb initial momentum reconstruction
- extra excitations of the nucleus (break fragment apart)
- eject additional particles (pions, ...)
- → attenuation/absorption
- in-medium effects

T. Aumann, C.A. Bertulani, J. Ryckebusch, PRC 88 (2013). A. Frotscher et al., PRL 125 (2020).

- L. Frankfurt, M. Strikman, M. Zhalov, PLB 503 (2001).
- S. Stevens et al., PLB 777 (2018).

T. Aumann, C.A. Bertulani, J. Ryckebusch, PRC 88 (2013).

A. Frotscher et al., PRL 125 (2020).

L. Frankfurt, M. Strikman, M. Zhalov, PLB 503 (2001).

S. Stevens et al., PLB 777 (2018).

Three experimental campaigns

 \rightarrow Proton knockout (p,2p) at high energy and large momentum transfer

Experiment at JINR

"Mean-field": ¹²C(*p*, 2*p*)¹¹B ¹¹**B** ¹²C(*p*,2*p*)¹⁰B,¹⁰Be SRC: DCH · Dipole magnet RPC Si Proton GEM TC 30cm LH₂ Target **MWPC** -Proton 48 GeV/c ¹²C lons BC

Heavy-fragment identification: post-selection

Quasi-free (p,2p) scattering

Reconstruct "initial" nucleon momentum from scattered protons

But: Is QE scattering free of FSI?

(*p*,2*p*) inclusive scattering dominated by inelastic scattering and initial/final state interactions

Reaction mechanism under control

Single-step nucleon knockout

ightarrow access ground-state distribution

Calculation of QE (p,2p)scattering off *p*-shell nucleon in ¹²C without ISI/FSI

[T. Aumann, C.A. Bertulani, J. Ryckebusch, PRC 88 (2013).]

Fragment-proton correlation

p_{miss} = -**p**_{A-1}

New 2022 data: QE ¹²C(p,2p)¹¹B

GSI-FAIR 2 GeV/c/u

22

QE cross section ¹²C(p,2p)¹¹B at 3.75 GeV/c/u

23

Theory comparison: Translationally-invariant shell model

- σ ~ nuclear structure + reaction [A. Larionov, PRC 110 (2024)]
- Shell Model [WS + 2-body] absorption [Glauber calculation]

Theory comparison: Translationally-invariant shell model

- σ ~ nuclear structure + reaction [A. Larionov, PRC 110 (2024)]
 - Shell Model [WS + 2-body] absorption [Glauber calculation]

Preliminary Data-Theory comparison

Preliminary Data-Theory comparison

Nuclear structure at high momentum transfer

Possible reasons for large R_s

Modified in-medium effects? High sensitivity to absorption

Possible reasons for large R_s

Modified in-medium effects? High sensitivity to absorption

"Unquenching"

L. Lapikás, G. van der Steenhoven, L. Frankfurt, M. Strikman, M. Zhalov, PRC 61 (2000). \rightarrow Experiment in inverse kinematics at high energy with hadronic probe

is a "clean" technique to study nuclear structure

500

600

SRC study in inverse kinematics

Measure:

- scattered proton momenta
- fragment momentum
- recoil nucleon momentum
- final state / energy

Extract:

p_{miss} pair c.m. factorization pair ratios spin, parity

JINR 2018: SRC identification

23 np pairs (¹⁰B)
2 pp pairs (¹⁰Be)
→ np dominance

Fragment momentum = pair c.m. motion

direct extraction: $\sigma = (156 \pm 27) \text{ MeV/c}$ $\rightarrow \text{ small c.m. momentum}$

Pair correlations

strongly correlated pair: NN back-to-back emission weak interaction between pair and A-2 spectator

→ Factorization measured directly

36

- I. Study nuclear ground-state distributions Inverse kinematics (p,2p) reactions at high energy, suppresses quantum-mechanical interference
- II. Absorption and spectroscopic strength at large momentum transfer
- III. Study of SRCs with hadronic probes: 1st SRC experiment in inverse kinematics with access to new observables -> probe universality
- IV. Study of cold dense nuclear matter:Pathway for SRC studies with radioactive nuclei
- V. Inverse kinematics with polarized beams

Thank You.

JINR Experiment

Göran Johansson (TAU)

Timur Atovuallev (JINR)

Sergey Nepochatykh (JINR)

Yaopeng Zhang (Tsinghua U)

Lenivenko (JINR)

11117

GSI-FAIR Experiment

Hang Qi (MIT)

Andrea Lagni (CEA)

Manuel Xarepe (U Lisbon)

Enis Lorenz (TUDa)

Maria Patsyuk, Eli Piasetzky, Zhihong Ye. Anna Corsi, Or Hen, Tom Aumann, Meytal Duer, Valerii Panin.

TECHNISCHE UNIVERSITÄT

