Precision physics at MESA

2024 Joint Photonuclear Reactions and Frontiers & Careers Workshop August 9, 2024

Tyler Kutz MIT

Electron scattering powerful tool for probing nuclear structure and interactions

- Convenient to...
 - ...detect scattered electrons
- Nuclear structure measurements frequently interpreted in *Born approximation*
- Study fundamental interactions with processes beyond one-photon exchange

...produce electron beams

JGU

10 0 7284

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

and the second and the second se

Mainz Microtron (MAMI)

- \bullet Beam energy up to 1.5 GeV
- Currents up to 20 μ A (polarized), 100 μ A (unpolarized)
- Complementary experimental halls:
 - High-resolution spectrometers
 (A1)
 - Tagged real photon beams
 (A2)
 - Parity violation
 (A4)

Mainz Energy-recovery Superconducting Accelerator (MESA)

Electron accelerated

Energy returned to linac

• In energy-recovery mode:

• Energy up to 105 MeV

• Currents over 1000 μA

• In energy-recovery mode:

• Energy up to 105 MeV

• Currents over 1000 μA

• In energy-recovery mode:

- Energy up to 105 MeV
- Currents over 1000 μA
- In extracted-beam mode:
 - Energy up to 155 MeV
 - Current up to 150 μ A
 - Polarization up to 80%

• In energy-recovery mode:

- Energy up to 105 MeV
- Currents over 1000 μA
- In extracted-beam mode:
 - Energy up to 155 MeV
 - Current up to 150 μ A
 - Polarization up to 80%

• MAGIX:

- Proton form factors
- Astrophysical S-factor
- P2:
 - Proton weak charge/ $\sin^2 \theta_W$
 - Neutron skin thickness
- Both: two-photon exchange

MAinz Gas Injection Target EXperiment (MAGIX)

- High-intensity ERL beam allows (and requires) diffuse targets!
- Primary target: hypersonic gas jet
- Competitive luminosity (10³⁵ cm⁻² s⁻¹)
- Negligible energy loss, multiple scattering, target window background

MAinz Gas Injection Target EXperiment (MAGIX)

- High-intensity ERL beam allows (and requires) diffuse targets!
- Primary target: hypersonic gas jet
- Competitive luminosity (10³⁵ cm⁻² s⁻¹)
- Negligible energy loss, multiple scattering, target window background

MAinz Gas Injection Target EXperiment (MAGIX)

- High-intensity ERL beam allows (and requires) diffuse targets!
- Primary target: hypersonic gas jet
- Competitive luminosity (10³⁵ cm⁻² s⁻¹)
- Negligible energy loss, multiple scattering, target window background

MAGIX spectrometers

GEM based TPC

Scintillation **Detectors**

MAGIX spectrometers

Proton form factors

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \frac{1}{\varepsilon(1+\varepsilon)}$$

 $\frac{1}{\tau} \left(\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \right), \quad \tau = \frac{Q^2}{4M^2}$

Proton form factors

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \frac{1}{\varepsilon(1+\tau)} \left(\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right), \quad \tau = \frac{Q^2}{4M^2}$$

		1	.000%	
•	Reduced uncertainty from internal gas target	itive precision	100%	
•	Significant improvement at low Q^2		10 %	
•	Particular impact on G_M , magnetic radius		1%	
			0.1%	

0.0001

Astrophysical S-factor

$$\sigma(E_{CM}) = \frac{1}{e^{-2\pi\eta}S(E_{CM})}, \quad \eta \propto Z_1 Z_2$$

- $S(E_{CM})$ factor due to nuclear structure
- ${}^{12}C(\alpha, \gamma){}^{16}O$ of high astrophysical relevance
- Measure time-reversed process in electrodisintegration of of ¹⁶O

Astrophysical S-factor

$$\sigma(E_{CM}) = \frac{1}{e^{-2\pi\eta}S(E_{CM})}, \quad \eta \propto Z_1 Z_2$$

- $S(E_{CM})$ factor due to nuclear structure
- ${}^{12}C(\alpha, \gamma){}^{16}O$ of high astrophysical relevance
- Measure time-reversed process in electrodisintegration of of ¹⁶O

• MAGIX:

- Proton form factors
- Astrophysical S-factor
- P2:
 - Proton weak charge/ $\sin^2 \theta_W$
 - Neutron skin thickness
- Both: two-photon exchange

Left-handed

Right-handed

 \bullet Interference between γ and Z exchange leads to parity-violating asymmetry

$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto \frac{\mathcal{M}_{\gamma}^* \mathcal{M}_Z}{\mathcal{M}_{\gamma}^2} \propto \frac{G_F Q^2}{4\pi\alpha}$$

• Interference between γ and Z exchange leads to parity-violating asymmetry

$$A_{PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto \frac{\mathcal{M}_{\gamma}^* \mathcal{M}_Z}{\mathcal{M}_{\gamma}^2} \propto \frac{G_F Q^2}{4\pi\alpha}$$

- Typically order parts per million or less
- Sensitive to variety of physics depending on target, kinematics

• History of PVES: continuous improvement in accelerator and detector technology

• State of the art: sub-ppb statistical reach and control of systematics

 10^{-6} V_{0}^{Ad}

0.245

• Is the weak mixing angle consistent with SM calculations?

0.240

 $\sin^2\hat{\theta}(\mu)$ 0.235

0.230

0.225

0.245

0.240

- Is the weak mixing angle consistent with SM calculations?
- Elastic *ep* scattering:

$$A_{PV} \propto \frac{G_F}{\sqrt{2\pi\alpha}} \left(1 - 4\sin^2\theta_W\right) \qquad \stackrel{(1)}{\underset{\text{is}}{\underbrace{\bigcirc}}} 0.235$$

0.230

0.225

0.245

0.240

- Is the weak mixing angle consistent with SM calculations?
- Elastic *ep* scattering:

- Larger impact of BSM physics at 0.230 low Q^2
- Constrain BSM physics through 0.225 effective models \rightarrow sensitive to mass scales up to $\Lambda \approx 50$ TeV!

0.245

0.240

- Is the weak mixing angle consistent with SM calculations?
- Elastic *ep* scattering:

- Larger impact of BSM physics at 0.230 low Q^2
- Constrain BSM physics through 0.225 effective models \rightarrow sensitive to mass scales up to $\Lambda \approx 50$ TeV!

P2: *Q_{weak}* at MOLLER precision!

• Where do neutrons go in neutron-rich nuclei?

- Where do neutrons go in neutron-rich nuclei?
- Parity violation in elastic *eA* scattering

$$A_{PV} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \frac{F_W(Q^2)}{F_{ch}(Q^2)}$$

• Sensitive to RMS neutron radius R_n , neutron skin thickness $R_n - R_p$

- Where do neutrons go in neutron-rich nuclei?
- Parity violation in elastic *eA* scattering

$$A_{PV} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \frac{F_W(Q^2)}{F_{ch}(Q^2)}$$

- Sensitive to RMS neutron radius R_n , neutron skin thickness $R_n - R_p$
- Two measurements at JLab by PREX/ CREX:
 - ²⁰⁸Pb: constrain nuclear EOS
 - ⁴⁸Ca: bridge between calculations of light and heavy nuclei

- Where do neutrons go in neutron-rich nuclei?
- Parity violation in elastic *eA* scattering

$$A_{PV} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \frac{F_W(Q^2)}{F_{ch}(Q^2)}$$

- Sensitive to RMS neutron radius R_n , neutron skin thickness $R_n - R_p$
- Two measurements at JLab by PREX/ CREX:
 - ²⁰⁸Pb: constrain nuclear EOS
 - ⁴⁸Ca: bridge between calculations of light and heavy nuclei

MREX to carry out similar ²⁰⁸Pb measurement with *half the uncertainty*!

Emergence of saturation density?

- PREX claims extraction of interior baryon density of lead...from one data point sensitive to RMS radius
- Possible to measure multiple Q^2 point(s) at MESA

P2 spectrometer

PVES has unique demands for detectors

- Insensitive to low-energy background \rightarrow Pure Cherenkov detector
- Accommodate 100+ GHz event rates to achieve required statistics
 - \rightarrow Radiation-hard material
 - \rightarrow Integrate signal from many simultaneous events (no "counting")

PVES has unique demands for detectors

- Insensitive to low-energy background \rightarrow Pure Cherenkov detector
- Accommodate 100+ GHz event rates to achieve required statistics
 - \rightarrow Radiation-hard material
 - \rightarrow Integrate signal from many simultaneous events (no "counting")

Integrating quartz Cherenkov detectors

P2 detector ring

• MAGIX:

- Proton form factors
- Astrophysical S-factor
- P2:
 - Proton weak charge/sin² θ_W

Neutron skin thickness

• Both: two-photon exchange

• TPE is a background to PVES (single-spin asymmetry)

- TPE is a background to PVES (single-spin asymmetry)
- TPE is favored hypothesis for proton form factor ratio discrepancy

Single-spin asymmetries sensitive to TPE

• Beam- or target-normal SSA:

 $A_{\perp} = (\sigma^{\uparrow} - \sigma^{\downarrow}) / (\sigma^{\uparrow} + \sigma^{\downarrow}) \propto \operatorname{Im}[\mathcal{M}_{2\gamma}\mathcal{M}_{1\gamma}^{*}]$

• Multiple measurements of beam-normal SSA in *ep* and *eA* scattering disagree with theory

Single-spin asymmetries sensitive to TPE

• Beam- or target-normal SSA:

 $A_{\perp} = (\sigma^{\uparrow} - \sigma^{\downarrow}) / (\sigma^{\uparrow} + \sigma^{\downarrow}) \propto \operatorname{Im}[\mathcal{M}_{2\gamma}\mathcal{M}_{1\gamma}^{*}]$

• Multiple measurements of beam-normal SSA in *ep* and *eA* scattering disagree with theory

• Possible SSA measurements at MESA:

- Background measurements for P2
- Gas jet target? (Avoid matter effects for outgoing electron)

• MESA is a cutting-edge electron accelerator being built at JGU Mainz

- MESA is a cutting-edge electron accelerator being built at JGU Mainz
- MAGIX: proton structure, astrophysical processes, few-body systems

- MESA is a cutting-edge electron accelerator being built at JGU Mainz
- MAGIX: proton structure, astrophysical processes, few-body systems
- P2: high-precision weak mixing angle, neutron skin thicknesses

- MESA is a cutting-edge electron accelerator being built at JGU Mainz
- MAGIX: proton structure, astrophysical processes, few-body systems
- P2: high-precision weak mixing angle, neutron skin thicknesses
- Currently under construction... set to begin 2025!

