Status of the Muon g-2 Experiment at Fermilab

Sean Foster, University of Kentucky On behalf of the Muon g-2 Collaboration August 9, 2024

> 2024 Joint Photonuclear Reactions and Frontiers & Careers Workshop MIT Laboratory for Nuclear Science

Wilson Hall Fermilab Batavia, IL

Photo taken in 2013!

Muon g-2 storage ring

The Muon g-2 Collaboration

US Universities

- Boston
- Cornell
- UIUC
- **James Madison**
- Kentucky
- **Massachusetts**
- Michigan
- **Michigan State**
- Mississippi
- **North Central College**
- Regis
- Virginia
- Washington

US National Labs

- Argonne
- Brookhaven
- Fermilab

China

Shanghai Jiao Tong

Germany

- Dresden
- Mainz

Italy

- Frascati
- Molise
- **Naples**
- Pisa
- **Roma Tor Vergata**
- Trieste
- Udine

Korea

CAPP/IBS/KAIST

Russia

- **Budker/Novosibirsk**
- **JINR Dubna**

$\mathbb{N}\mathbb{Z}$ United Kingdom $\overline{}$

- Lancaster/Cockcroft
- Liverpool
- Manchester
- **University College** London

181 collaborators **33** Institutions 7 countries

Collaboration Meeting Ann Arbor, MI July 2024

- Collaboration formed in the mid/late 2000s
- **Technical Design** Report in 2015
- First beam in 2017 commissioning run
- Goal: measure the muon magnetic anomaly to a precision of 140 partsper billion, x4 more precise than previous best measurement

Motivation

- - Evidence aplenty that the SM is incomplete, e.g. what is the nature of dark matter? origin of matter/anti-matter asymmetry in the universe? etc.
- How to test SM and search for new physics?

Go to high energy!

Look out into the universe! **Study lots of particles!**

CMS, LHC CERN

JWST, NASA

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

• Test the Standard Model (SM) of particle physics and search for new physics

DUNE, Fermilab

Motivation

- - Evidence aplenty that the SM is incomplete, e.g. what is the nature of dark matter? origin of matter/anti-matter asymmetry in the universe? etc.
- How to test SM and search for new physics?

Go to high energy!

Study lots of particles! Look out into the universe!

CMS, LHC CERN

JWST, NASA

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

• Test the Standard Model (SM) of particle physics and search for new physics

DUNE, Fermilab

5

Magnetic moments can test the Standard Model

Pick the muon!

Standard Model of Elementary Particles

- The **muon** is a second generation charged lepton
- Decays into an electron and two neutrinos with a lifetime of $\sim 2.2 \mu s$
- 207x more massive than the electron
- Sensitivity to virtual particles $\propto m_l^2/M^2$, so muon is 40,000x more sensitive than electron

$$g = 2 + \frac{\alpha}{\pi} + \dots$$

Muon g-2 Theory Initiative

- muon magnetic anomaly
- Published a White Paper in 2020

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

• Group of scientists working to compile all inputs to Standard Model prediction of the

White Paper: Phys. Rept. 887 (2020) 1-166 https://doi.org/10.1016/j.physrep.2020.07.006

Theory prediction

- SM value is dominated by QED contributions, over 99.99% of total
- But, **uncertainty** is dominated by Hadronic contributions, which are notoriously (HVP)

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

difficult to calculate: hadronic light-by-light (HLbL) and hadronic vacuum polarization

How precise is 369 ppb?

- I went to BU for my PhD and the physics department is about a 1.6 mile walk from here
- If I wanted to precisely determine that distance to 369 ppb: get it right to 1 mm!

 369 ppb sets scale for what experiment should achieve

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

10

Fermilab experiment continues the effort

- 60+ year history of measuring muon g-2
- Previous experiment took place at **Brookhaven National Lab (BNL)**
- Fermilab experiment uses the same magnet -> the big move!

Fermilab results from first 3 Runs

- First result (2021) based on Run-1 data: comparable uncertainty & consistent with BNL
- Second result (2023) based on Run-2/3 data: reduced uncertainty by x2 and consistent again!

 $a_{\mu}(\text{Exp}) = 0.00116592059(22)$ [190 ppb]

Compare to theory after our Run-2/3 result

It is purely for demonstration purposes → should not be taken as final!

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

	 Since theory White Paper, new results for HVP contributions
	 Different methods disagree with each other
	 Two methods are a dispersive approach (used in White Paper) and lattice QCD
	 Theory initiative working to understand these tensions
)	 For now, hard to draw conclusion

JS

We surpassed goal of x21 statistics of BNL

- **Completed data** collection in June 2023
- **Reached TDR goal**
- Run-4/5/6: analysis underway, expected to surpass target of 140 ppb
- Last result anticipated in 2025

Measurement details

Place muon in a magnetic field

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

Momentum vectors rotates at cyclotron frequency $\propto B$

If g = 2 (not our universe!)

- Momentum vectors rotates at cyclotron frequency $\propto B$
- Spin precession is $\propto B$ and g(want to measure this!)

If $g \neq 2$ (our universe!)

- Momentum vectors rotates at cyclotron frequency $\propto B$
- Spin precession is $\propto B$ and g(want to measure this!)

Difference frequency \propto anomaly

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

• **Difference** frequency \propto **anomaly**!

$$\omega_a = a_\mu \frac{e}{m} B$$

 At fixed locations around ring, spins rotate at ω_a

Measurement recipe

Experiment at Fermilab: Beam

- Polarized muons from pion decay
- Momentum selected to ~3.1 GeV/c
- Stored muons are within $dp/p \sim 0.1\%$
- Average rate of 11.4 "fills" per second
- ~120 ns wide pulses
- ~10,000 stored muons per fill
- Each fill lasts about 1 ms

Experiment at Fermilab: Storage Ring Magnet

- 7.112 meter radius superconducting storage ring magnet
- 1.45 T uniform field
- Muons precess in the magnetic field

Field Measured with NMR

• Use proton nuclear magnetic resonance (NMR) to measure B-field (also a precession frequency!)

Fixed probes above/below muon storage region

Experiment at Fermilab: Injection

- Muons injected through hole in backleg of the magnet
- Inflector magnet cancels main field to allow muons straight path into the ring

Experiment at Fermilab: Kickers

- Muons initial phase space not matched to ring admittance
- Needs ~10 mrad radial "kick" to get onto design orbit
- Kick achieved with **three** fast kicker magnets, 90 degrees from injection

Experiment at Fermilab: Quadrupoles

- Vertical focusing achieved with electrostatic quadrupoles
- Spans ~43% of the ring azimuth, symmetrically
- E and B fields lead to betatron motion; muon beam "swims" around the storage region radially and vertically

Experiment at Fermilab: Storage & Decay

- At this point, muons are stored and importantly the spins are precessing!
- With a momentum of ~3.1 GeV/c, our muons have a boosted lifetime ~64us
- Then, they decay and decay positron spirals inwards

Experiment at Fermilab: Trackers

- Two straw tube tracker stations placed on inside of the ring 180 and 270 degrees from injection
- Each station composed of 8 "modules"

Decay e+ Top down view of ring section Tracker Calorimeters

Experiment at Fermilab: Muon Distribution from Trackers

- Form tracks from straw hits
- Extrapolating backwards allows \bullet reconstruction of the muon beam over time
- Muons undergo betatron motion \bullet

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

distribution to get magnetic field "seen" by the muons

Experiment at Fermilab: Calorimeters

• 24 electromagnetic calorimeters line inside of ring to decay spiraling positrons

Experiment at Fermilab: Calorimeters

- 24 electromagnetic calorimeters line inside of ring
- Each "calo" is a 6x9 grid of PbF₂ Cherenkov crystals
- Light collected by SiPMs
- Laser calibration system ensures gain stability
- Energy & time of each positron arrival is reconstructed

Use muon decay to access ω_a

- highest energy decay positron and the muon spin
- In lab frame, decay positron energy spectra is modulated by ω_a

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

Parity violation of muon decay leads to a correlation between momentum direction of

"Wiggle" plot from Run-3a

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

exponential decay: **boosted lifetime** $\approx 64.4 \mu s$

wiggle is $\omega_a \propto g - 2$ (signal!)

relative size of wiggle: **asymmetry** ≈ 0.35

Fit to extract frequency (simplified function):

 $N(t) = N_0 e^{(-t/\tau)} \left[1 + A\cos(\omega_a t - \phi) \right]$

$$\delta\omega_a(\text{stat}) = \frac{\sigma_{\omega_a}}{\omega_a} = \frac{\sqrt{2}}{\sqrt{N}A\gamma\tau\omega_a}$$

Bringing it all together

 ω_a from fitting the "wiggle" plot

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

B-field from **proton NMR** and weighted by muon distribution from trackers

Bringing it all together

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\widetilde{\omega_p(T_r)}} = \frac{f_{\mathsf{clock}}\omega_a^m (1 + C_e + C_p + C_{ml} + C_{pa} + C_{dd})}{f_{\mathsf{calib}} \left\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \right\rangle (1 + B_k + B_q)}$$

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

In reality, some complications from beam dynamics and magnetic transients

Systematic uncertainty example

- Coherent betatron oscillation (CBO) is the radial motion of the beam
- Visible in the calorimeter data and must be accounted for in fit

Uncertainties in Run-2/3 and improvements

TABLE I. Values and uncertainties of the \mathcal{R}'_{μ} terms in Eq. (2), and uncertainties due to the external parameters in Eq. (1) for a_{μ} . Positive C_i increases a_{μ} ; positive B_i decreases a_{μ} [see Eq. (2)]. The ω_a^m uncertainties are decomposed into statistical and systematic contributions. All values are computed with full precision and then rounded to the reported digits.

Quantity	Correction (ppb)	Uncertainty (ppb)
ω_a^m (statistical)	• • •	201
ω_a^m (systematic)	•••	25
C_e	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46
\boldsymbol{B}_k	-21	13
B_q	-21	20
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	•••	11
m_{μ}/m_e		22
$g_e/2$	•••	0
Total systematic for \mathcal{R}'_{μ}		70
Total external parameters	• • •	25
Total for a_{μ}	622	215

15

Horizontal centroid [mm]

• Run-2/3 uncertainty was statistics dominated 201 ppb

- Run-4/5/6 to reduce this to ~100 ppb!
- Run-5 onwards, implemented RF pulse to electrostatic quadrupole plates to dampen CBO signal
 - Dedicated measurements to better constrain beam dynamics corrections and magnetic transients

Summary and Outlook

- Muon g-2 experiment at Fermilab poised to surpass goal of 140 ppb measurement of muon magnetic anomaly
- Based on first three years of data, we've determined a_{μ} to 203 ppb
- Current comparison with theory is difficult due to tension among different HVP calculations; lots of active work in theory community
- We also have other measurement efforts: muon EDM, CPT/Lorentz violation, dark matter search

Sean Foster | Status of the Muon g-2 Experiment at Fermilab | August 9, 2024

38

Acknowledgments

- Department of Energy (USA)
- National Science Foundation (USA)
- Istituto Nazionale di Fisica Nucleare (Italy) \bullet
- Science and Technology Facilities Council (UK)
- Royal Society (UK)
- Leverhulme Trust (UK) \bullet
- European Union's Horizon 2020
- Strong 2020 (EU)
- German Research Foundation (DFG)
- National Natural Science Foundation of China
- MSIP, NRF, and IBS-R017-D1 (Republic of Korea)

