Λ(1405) and Λ(1520) Line Shape Studies using Grue Phase I Data

Sean Dobbs

Florida State University

On behalf of Nilanga Wickramaarachchi (Catholic Univ.) & Reinhard Schumacher (Carnegie Mellon Univ.) & Peter Hurck (Univ. Glasgow) & Greg Kalicy (Catholic Univ.) & other GlueX Collaborators

- Place of the $\Lambda(1405)$ in the world
- GlueX measurement for two final states
- K-matrix fits with one or two Λ(1405) resonances & two scattering states
- 2-Pole nature of mass spectrum

- What is the place of the $\Lambda(1405)$ in baryonic physics?
 - It's too light, compared to $\Lambda(1520)$, in the quark model.
 - Close to the $N\overline{K}$ mass threshold 1432 MeV
 - Decays to $\Sigma\pi$, but MUST also decay to $N\overline{K}$.
- Chiral unitary models, CPT, LQCD (& others) predict two I=0 states in Λ(1405) mass range.
- GlueX has the best data set, generating it cleanly in photoproduction: $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \{\Sigma^0 \pi^0\}$ $\rightarrow K^+ \{p K^-\} (> N\overline{K} \text{ threshold})$

Pole Positions from the Literature

Thresholds: $\Sigma^0 \pi^0$ 1327.62 MeV $p K^-$ 1431.95 MeV

- Higher pole ~1430 MeV couples more strongly to NK, lower pole ~1390 MeV couples more to Σπ
- Many theorists believe: NK
 quasi-bound state
 submerged in Σπ continuum:
 coupled-channel dynamics
- Most data from low-energy NK scattering, kaonic atoms
 - not very sensitive to $\Sigma\pi$ pole position

GlueX approach is new and different

GIVE Experiment at JLab

The GlueX Beamline and Detector NIM A 987, 164807 (2021)

GlueX Competitive Advantages

 GlueX has world's best data set producing Λ(1405) cleanly in photoproduction: γ p→ K⁺ Λ(1405)

 \rightarrow K⁺ { Σ^0 π^0 } (pure I = 0, no I = 1 contamination)

$$\rightarrow \mathsf{K}^{+} \{\{\gamma \Lambda\} \pi^{0}\} \rightarrow \mathsf{K}^{+} \gamma p \pi^{-} \gamma \gamma$$

• GlueX also has: $\gamma p \rightarrow K^+ \Lambda(1405)$

 $\rightarrow K^+ \{p \ K^-\}$ (when above $N\overline{K}$ threshold)

Do K-matrix fit to both final states together

Never done before...

Experimental Method I

$\Sigma^0 \pi^0$ channel

- Exclusive kinematic fit to beam photon & final state {K⁺ γ p π⁻ γ γ} particles
- Constrain Λ and π⁰ masses, but not Σ⁰ mass, in each Σ⁰π⁰ mass bin
- Background removal fit under Σ⁰ in each Σ⁰π⁰ mass bin

Experimental Method II

• $\Sigma^0 \pi^0$ channel

- Clean detection of $\Lambda(1405)$ & $\Lambda(1520)$
- Evident pK⁻ threshold effect
- Smooth acceptance

- pK⁻ channel
 - $\Lambda(1520)$ sits on top of $\Lambda(1405)$ tails
 - Good, smooth acceptance

Cross Sections Differential in Mass

• $\Sigma^0 \pi^0$

- $N\overline{K}$ threshold break visible
- Average mass resolution ~7.8 MeV

⊢ p K⁻

- Scaled by PDG branching and isospin factors of $\Lambda(1520)$ to "match" $\Sigma^0 \pi^0$ scale
- N.B.: instant turn-on at $N\overline{K}$ threshold
- Average mass resolution ~2.0 MeV

 $0.00 < -t' < 1.50 \,\mathrm{GeV^2}$

Thresholds: Σ⁰π⁰ 1327.62 MeV *p K*⁻ 1431.95 MeV

Application of K-Matrix Method*

- Resonances included (all coupled to $\Sigma^0 \pi^0$ and p K⁻):
 - Λ(1405)_A (J=1/2 L=0)
 - Λ(1405)_B (J=1/2 L=0)
 - Λ(1520) (J=3/2 L=2)
- Assume J=1/2 L=0 states do not interfere with J=3/2 L=2 state
- Poles "A" & "B" are below threshold for pK⁻ channel
- Define "branching ratio" & "branching fractions" in terms of fitted $\Sigma \pi$ and $N\overline{K}$ final states

2-Pole K-matrix Fit to $\Lambda(1405)$ A,B

• $\Sigma^0 \pi^0$ channel

- Solid fit to data
- Dashed each A,B resonance separately
- Dotted fit to data:
 - full K-matrix fit with coherent $\Lambda(1405)A,B$ states
 - prior to convolving 7.8 MeV GlueX mass resolution

pK⁻ channel

- Solid fit to data:
 - 2.0 MeV GlueX mass resolution
- Dashed coherent tail of $\Lambda(1405)A,B$ states
- Dotted incoherent high-mass background
 - 3rd order polynomial
- 0.00 < -t' < 1.50 GeV² (full range)
- $\Lambda(1520)$ cross section agreement < 5%

1-Pole K-matrix Fit to $\Lambda(1405)B$

• $\Sigma^0 \pi^0$ channel

- Solid fit to data
- Dashed single $\Lambda(1405)$ resonance

pK⁻ channel

- Solid fit to data
- Dashed pK⁻ tail of $\Lambda(1405)$ state
- Dotted incoherent high-mass background
 - 3rd order polynomial
- 0.00 < -t' < 1.50 GeV² (full range)
- Poorer fit than 2-pole ansatz: especially in critical threshold region

Check Unitarity of the Amplitudes

- Argand diagram and squared-magnitude for the Σ⁰π⁰ amplitude (red)
 - Two Λ(1405) resonances with Σ⁰π⁰ and pK⁻ initial/final states.
 - Each amplitude stays properly bounded.
- Separately, $\Lambda(1520)$ is a single pK- amplitude (blue)

- First measurement of the $\Lambda(1405)$ decaying into two separate channels: $\Sigma^0 \pi^0$ & pK⁻
- K-matrix fit to two intermediate resonances: A & B
- Two-pole ansatz is superior to single-pole ansatz
- Final pole positions and branching ratio/fractions being determined
- Systematics to be finalized

GlueX acknowledges the support of several funding agencies and computing facilities (http://gluex.org/thanks)

$\gamma_{\mathbf{K}^{+}}$ $\Lambda(1520)$ Pole Position Compared to PDG

$\Lambda(1520)$ pole position

REAL PART1517 to 1518 (≈ 1517.5) MeV $-2 \times IMAGINARY PART$ 14 to 18 (≈ 16) MeV($\rightarrow \sim 2 \times 8$ MeV)

GlueX (preliminary):

 $(1516.5 \pm 0.3) - i (8.3 \pm 0.1)$ MeV (stat errors only)

Good agreement with PDG: suggests the GlueX method is sound

Chiral Unitary Models

Fig. 1. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking parameter x gradually. At the SU(3) symmetric limit (x = 0), only two poles appear, one is for the singlet and the other for the octets. The symbols correspond to the step size $\delta x = 0.1$.

- SU(3) baryons irreps 1+8_s+8_a combine with 0 - Goldstone bosons to generate:
 - Two octets and a singlet of ¹/₂⁻ baryons <u>dynamically generated</u> in the SU(3) limit
 - SU(3) breaking leads to two S = -1, I = 0 poles near 1405 MeV

17

- ~1420 mostly $N\overline{K}$
- ~1390 mostly $\Sigma \pi$
- Possible weak I=1 pole also predicted

$\gamma_{\mathbf{K}}^{\uparrow}$ Pole positions from the literature

- Higher pole ~1430 MeV couples more strongly to $N\overline{K}$, lower pole ~1390 MeV couples more to $\Sigma\pi$
- Many theorists believe: $N\overline{K}$ quasi-bound state submerged in $\Sigma\pi$ continuum: coupled-channel dynamics
- Most data from low-energy *NK* scattering, kaonic atoms not very sensitive to $\Sigma\pi$ pole position

GlueX approach is new and different

Y R Pole positions from the literature

B. Cid-Mora, HIM Mainz, MENU 2023 Lattice QCD Theory

J. Bulava et al., Phys Rev Lett 132, 051901 (2024)J. Bulava et al., Phys Rev D 109, 014511 (2024)

K-matrix formalism* (outline sketch)

- We have two resonances, $\Lambda(1405)_A$ and $\Lambda(1405)_B$, each coupled to $\Sigma^0 \pi^0$ and p K⁻. The $\Lambda(1520)$ also decays to the same final states.
- Assume $J=\frac{1}{2}$ L=0 states do not interfere with J=3/2 L=2 state

$$\widehat{T} = \left(I - i\widehat{K}\rho\right)^{-1}\widehat{K}$$
$$K = \sum_{\alpha} \frac{m_{\alpha}\Gamma_{\alpha}(m)}{m_{\alpha}^2 - m^2}$$

$$\widehat{K_{ij}} = \sum_{\alpha} \frac{\gamma_{\alpha i} \gamma_{\alpha j} m_{\alpha} \Gamma_{\alpha}^{0}}{m_{\alpha}^{2} - m^{2}} B_{\alpha i}^{l} B_{\alpha j}^{l}$$

Lorentz-invariant T-matrix (2 in x 2 out)

Sum over resonances A & B ; real function, preserves unitarity of *T*

Invariant K-matrix for available decay modes $i, j = \{\Sigma^0 \pi^0, p \text{ K}^-\}$

* à la S.U. Chung et al., Ann. Physik 4,404 (1995).

K-matrix formalism* (outline sketch)

$$\widehat{P}_{i} = \sum_{\alpha} \frac{\beta_{\alpha} \gamma_{\alpha i} m_{\alpha} \Gamma_{\alpha}^{0}}{m_{\alpha}^{2} - m^{2}}$$
$$\widehat{F}_{i} = \left(I - i\widehat{K}\rho\right)^{-1}\widehat{P}_{i}$$

Photoproduction vector for decay modes *i* ; same sum over poles as K matrix

Production exp't replacement of *T* matrix "formation exp't" for decay mode *i*

$$\frac{d\sigma_i(m)}{dm} \sim \rho_i \left| \widehat{F}_i(m) \right|^2$$

Fit to experimental data for decay mode *i*

$$T_{11}(m) = \rho_{\Sigma^0 \pi^0}(m) \widehat{T}_{11}(m)$$

Compute *T* -matrix to be tested for unitarity and to find "*T* -matrix poles"

* à la S.U. Chung et al., Ann. Physik 4,404 (1995).

21

$\mathbf{K}^{\mathsf{T}}_{\mathsf{K}^{\mathsf{T}}}$ K-matrix formalism - issues

- Ignore the possibility of $\eta\Lambda$ and KE decays
- Poles "A" & "B" are below threshold for pK⁻ channel
- Define "branching ratio" & "branching fractions" in terms of fitted $\Sigma \pi$ and $N\overline{K}$ final states
 - Calculate using mass-integrated cross sections to each final state computed for each resonance separately
 - Not computed in terms of pole residues
 - (threshold issues make this difficult)

$\mathbf{Y}_{\mathbf{K}^{+}}^{\mathbf{N}} \text{ Rescaling of } pK^{-} \text{ and } \Sigma^{0}\pi^{0} \text{ Data}$

- Trust that isospin holds exactly
- Trust that PDG branching fractions are all OK
- Part I: Scale (Peter's) $\Lambda(1520) \rightarrow p K^-$ cross section to match (Nilanga's) $\Lambda(1520) \rightarrow \Sigma^0 \pi^0$ cross section
 - $p K^-$ branch to $\Lambda(1520)$ total: x 1/(0.45/2) (scale up)
 - Total $\Lambda(1520)$ to $\Sigma^0 \pi^0$:

- x 0.42 / 3 (scale down)
- Net p K⁻ rescaling factor = 0.6222

Y \mathbf{K}^+ **Rescaling of** pK⁻ and $\Sigma^0 \pi^0$ **Data**

- The p K⁻ "background" gets rescaled, too... so...
- Part II: Scale (Reinhard's) computed model $\Lambda(1405) \rightarrow p K^-$ <u>tail</u> to match rescaled $\Lambda(1520) \rightarrow \Sigma^0 \pi^0$
 - We see only $\Sigma^0 \pi^0$ but not $\Sigma^+ \pi^- \& \Sigma^- \pi^+ : \times 3.0$ (scale up)
 - (this is the total strength of $\Lambda(1405)$ production)
 - Equal $\Lambda(1405)$ decay to nK^0 and pK^- : x 0.5 (scale down)
 - Adjust for the pK^- data rescaling: x 0.622
 - Net pK^- calculated tail curve rescaling = 0.9333

Rescaling of pK^- and $\Sigma^0\pi^0$ Data

- Our quoted $\Lambda(1405)$ branching ratio/fractions are for isospin-corrected $\Sigma \pi$ and $N\overline{K}$
- Part III: Scale measured cross sections to account for isospin
 - We measure (Nilanga) $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$, not $\Sigma^+ \pi^- \& \Sigma^- \pi^+$, so correct for isospin: × 3 (scale up)
 - Computed $N\overline{K}$ tail (Reinhard) from $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$, again correct for isospin: X 3 (scale up)
 - (K-matrix fit does not, in itself, distinguish NK modes)

Chiral Unitary Models

Graphic: W. Weise

Pole positions from the literature

Xiu-Lei Ren, HIM Mainz, MENU 2023 Chiral Perturbation Theory

Thresholds: $\Sigma^0 \pi^0$ 1327.62 MeV *p* K⁻ 1431.95 MeV

		lower pole	higher pole
This work	$F_0=F_\pi$	1337.7 - i79.1	1430.9-i8.0
(LO)	$F_0=103.4$	1348.2 - i120.2	1436.3 - i0.7
NLO	Y. Ikeda,NPA(2012)	$1381^{+18}_{-6}-i81^{+19}_{-8}$	$1424^{+7}_{-23}-i26^{+3}_{-14}$
	ZH.Guo,PRC(2013)-Fit II	$1388^{+9}_{-9} - i114^{+24}_{-25}$	$1421^{+3}_{-2}-i19^{+8}_{-5}$
	M.Mai,EPJA2015)-sol-2	$1330^{+4}_{-5}-i56^{+17}_{-11}$	$1434^{+2}_{-2}-i10^{+2}_{-1}$
	M.Mai,EPJA2015)-sol-4	$1325^{+15}_{-15} - i90^{+12}_{-18}$	$1429^{+8}_{-7} - i12^{+2}_{-3}$

Pole positions from the literature

Li-Sheng Geng, Beihang Univ. MENU 2023

The two-pole structure persists at N2LO

Meson-baryon scattering up to N2LO, Jun-Xu Lu, LSG*, M. Doering and M. Mai, PRL130, 071902(2023)

		Pole positions [MeV]	$ g_{\pi\Sigma} $ [GeV]	$ g_{\eta\Lambda} $ [GeV]	$ g_{\bar{K}N} $ [GeV]	$ g_{K\Xi} $ [GeV]
NNLO	$\Lambda(1380)$	$1392 \pm 8 - i(102 \pm 15)$	6.40 ± 0.10	3.01 ± 0.15	2.31 ± 0.10	0.45 ± 0.01
	$\Lambda(1405)$	$1425 \pm 1 - i(13 \pm 4)$	2.15 ± 0.07	5.45 ± 0.24	4.99 ± 0.08	0.58 ± 0.02
NNLO*	$\Lambda(1380)$	$1384 \pm 7 - i(85 \pm 11)$	3.26 ± 0.11	0.87 ± 0.02	2.04 ± 0.11	0.61 ± 0.02
	$\Lambda(1405)$	$1419 \pm 2 - i(14 \pm 4)$	3.24 ± 0.17	0.42 ± 0.02	6.01 ± 0.12	0.81 ± 0.03