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Jet: a collimated set of hadrons emerging

in a high-energy collision.
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Background: QCD jets

3

Jet: a collimated set of hadrons emerging

in a high-energy collision.

Jets often emerge in pairs,

e.g. in 𝑒+𝑒− annihilation.



4

Jet: a collimated set of hadrons emerging

in a high-energy collision.

Originating in the same 

process, the partons possess

quantum entanglement.

Jets often emerge in pairs,

e.g. in 𝑒+𝑒− annihilation.

Background: QCD jets



Motivation
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How to understand entanglement in jet fragmentation?

 Real-time quantum process requires

 Real-time quantum simulation
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 Real-time quantum process requires
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interesting physics with methods 

suitable for quantum simulation



Motivation

Why Schwinger model?
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• Simple enough for a first-principle real-time quantum simulation

• Has a lot of similarity with QCD in 3+1

How to understand entanglement in jet fragmentation?

 Real-time quantum process requires

 Real-time quantum simulation

A nice testbed for learning 

interesting physics with methods 

suitable for quantum simulation



Outline

• Schwinger model + jets

• Local operators and thermalization

• Entanglement, Schmidt states and hadronization
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Schwinger model

Single-flavor (1+1)-dimensional QED:

Features include:

• No magnetic field/no dynamical photons

• Linear potential between “quarks” – confinement

• Chiral condensate (spontaneous chiral symmetry breaking at m=0)
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Schwinger model

Single-flavor (1+1)-dimensional QED:

Features include:

• No magnetic field/no dynamical photons

• Linear potential between “quarks” – confinement

• Chiral condensate (spontaneous chiral symmetry breaking at m=0)

Massless case is exactly solvable, e.g. by bosonization:
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Schwinger model and jets: history
1974
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time

Massless Schwinger model with external source:
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Massless Schwinger model with external source:

2012

pairs pairs



Schwinger model and jets: history
1974
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time

Massless Schwinger model with external source:

2012

pairs pairs

Classical treatment is mostly sufficient 

in the exactly solvable massless case

However, massive fermion case 

is not exactly solvable and

inherently quantum



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge

Kogut-Susskind

N sites encode 

N/2 physical sites

Fermion



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge

Kogut-Susskind

N sites encode 

N/2 physical sites

Fermion

Gauge field

Gauss law

With open boundary conditions the electric field is fully determined by the fermions



Mapping to a spin chain (optional) 
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etc.



Mapping to a spin chain (optional) 

Jordan-Wigner transformation
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etc.



Mapping to a spin chain (optional) 

Jordan-Wigner transformation
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Spin chain Hamiltonian:

etc.

Kinetic term Mass term Nonlocal

electric field term
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Adding the jets



Numerical procedure
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Start from the ground state

of the Hamiltonian:

Switch on the external source

and time evolve:

Numerical time evolution using 

classical exact diagonalization or 

tensor networks mimics 

simulation on a quantum device



Screening, chiral condensate 
and entanglement
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Screening, chiral condensate 
and entanglement
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Electric energy

Chiral condensate

Entanglement entropy

Total charge



Screening, chiral condensate 
and entanglement
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Screening the

 electric field

Effects of the dynamical 

pair production:



Screening, chiral condensate 
and entanglement
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Screening the

 electric field

Effects of the dynamical 

pair production:

Destroying 

vacuum 

condensate



Screening, chiral condensate 
and entanglement
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Screening the

 electric field

Effects of the dynamical 

pair production:

Destroying 

vacuum 

condensate

Entangling

the jets



Towards thermalization
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Towards thermalization
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Compare to exact diagonalization

Tensor network methods allow studying much larger system



Towards thermalization

29Equilibration towards late times



Towards thermalization

30Equilibration towards late times

L L

Averaging over the central part
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Thermal expectation values
For any operator

where

Access the whole spectrum with 

exact diagonalization

Chiral condensate

Kinetic energy

Condensate 2pt functionCan also access Gibbs entropy:
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Thermalization dynamics

Reaching a universal 

temperature



Renyi entropy of the central region

Study as a function of L
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Ground state: “area law” (L-independent)

Typical state, e.g. thermal: “volume law” (linear in L)
E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar,

PRX Quantum 3 (2022)
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Area and volume laws
of entanglement

Adjust by the jet arrival time

area law at early times
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Area and volume laws
of entanglement

Adjust by the jet arrival time

area law at early times

Rescale by the subsystem size

volume law at late times



Entanglement spectrum
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Schmidt decomposition:

Symmetry-resolved:

L R



Renyi entropies and entangleness
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Differentiate between pure state (PS) 

and maximally entangled state (MES):



Fermionic Fock (computational) basis
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Neel state

N=10 example



Fermionic Fock (computational) basis
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Neel state

N=10 example

1-pair excitation

example

...



Strong coupling

Hadronization in real time
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Maximal overlap 

Schmidt vector Fock basis state

Weak coupling



Full state overlap 
with one-pair states
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Full state overlap 
with one-pair states
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t/a=3 Nearest neighbor pair - meson



Full state overlap 
with one-pair states
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t/a=3 Nearest neighbor pair - meson

t/a=6 – Two mesons



Full state overlap 
with one-pair states
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t/a=3 Nearest neighbor pair - meson

t/a=6 – Two mesons

t/a=8 – Three mesons



Full state overlap 
with one-pair states
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t/a=3 Nearest neighbor pair - meson

t/a=6 – Two mesons

t/a=8 – Three mesons

……………………

Thermal gas of hadrons?



Conclusion

• Dynamical pair production leads to electric field screening and 
modification of the vacuum condensate

• Electric field and chiral condensate equilibrate in the central region

• Second Renyi entropy in the central region exhibits a transition from 
the area law to the volume law

• Entanglement between jets steadily grows with contributions from 
many Schmidt states

• At large coupling we observe a dynamical transition of Schmidt states 
from fermionic Fock states to bosonic Fock states
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