

Heavy flavor spectroscopy studies at CMS

Xining Wang (Tsinghua University) On behalf of the CMS Collaboration

CMS dimuon & trigger

Excellent detector for B physics, especially for studies with muons

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T

- $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution

- Special triggers for different analyses at increasing Inst. Lumi.
 - μ p_T, (μμ) p_T, (μμ) mass, (μμ) vertex, and additional μ

- X(3872) studies
 - Measurement of X(3872) to $J/\psi\pi^+\pi^-$ (2013) JHEP 04 (2013) 154
 - Observation of $\mathrm{B}^0_s
 ightarrow \mathrm{X}(3872) \phi$ (2020) PRL 125 (2020) 152001
 - Evidence of X(3872) in PbPb collisions (2022) PRL 128 (2022) 032001
- Observations of new exotic hadrons
 - Observation of X(4140) in $J/\psi\phi$ from $B^{\pm} \rightarrow J/\psi\phi K^{\pm}$ (2014)
 - Observation of new structure in $J/\psi J/\psi
 ightarrow \mu^+ \mu^- \mu^+ \mu^-$ (2024)

PRL 132 (2024) 111901

MPLA 32 (2017) 1750139

- Observations of new decay channels (after 2022 only)
 - Observation of $B^0 \rightarrow \psi(2S) K^0_S \pi^+ \pi^-$ (2022) EPJC 82 (2022) 499
 - Observation of $\,\Lambda_b^0 o {
 m J}/\psi\,\Xi^-{
 m K}^+$ (2024) EPJC 84 (2024) 1062
 - Observation of $\Xi_b^- o \psi(2S)\Xi^-$ (2024) $_{\it PRD~110}$ (2024) 012002

Coalescence with particles in QGP \rightarrow Enhance X(3872)

• Breakup by co-moving particles \rightarrow Suppress X(3872)

X(3872) inner structure:

Compact, molecule

affects production in HI

What to expect in HI?

X(3872)/ψ(2S) Ratio in PbPb

• X(3872) to ψ (2S) ratio $\rho_{PbPb} = 1.08 \pm 0.49$ (stat.) ± 0.52 (syst.)

- Indication of ρ enhancement in PbPb w.r.t to pp
- Better precision needed to draw conclusion

Molecule indication? Still debatable

- X(3872) studies
 - Measurement of X(3872) to $J/\psi \pi^+\pi^-$ (2013)
 - Observation of $B_s^0 \rightarrow X(3872)\phi$ (2020)
 - Evidence of X(3872) in PbPb collisions (2022)
- Observations of new exotic hadrons
 - Observation of X(4140) in $J/\psi\phi$ from $B^{\pm} \rightarrow J/\psi\phi K^{\pm}$ (2014)
 - Observation of new structure in $J/\psi J/\psi
 ightarrow \mu^+ \mu^- \mu^+ \mu^-$ (2024)
- Observations of new decay channels (after 2022 only)
 - Observation of $B^0 \rightarrow \psi(2S) K_S^0 \pi^+ \pi^-$ (2022)
 - Observation of $\Lambda_b^0 o {
 m J}/\psi\,\Xi^-{
 m K}^+$ (2024)
 - Observation of $\Xi_b^- o \psi(2S) \Xi^-$ (2024)

First mention of 4c states at 6.2 GeV (1975):
Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2

 Inspired by 1980 R curve, first calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317 \bigvee J/ ψ J/ ψ blind mass window for 13 TeV

Designed 3 signal regions based on Run I hints

LHCb first got X(6900) out of the door! Congrats !

CMS merged 3 regions into one: [6.2, 7.8] GeV after LHCb's X(6900)

$J/\psi J/\psi$ candidates at 13 TeV

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- SPS+DPS+BW0 as our background

CMS J/ψJ/ψ model: 3 BWs + Background

The dips

PRL 132 (2024) 111901

> Possibility #1:

- Interference among structures?
- Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in paper/PAS

- More secrets to dig out
- We explored possibility #1 in detail

CMS J/ ψ J/ ψ interference fit

PRL 132 (2024) 111901

- Fit with interf. among BW1, BW2, and BW3 describes data well
- Measured mass and width in the interference fit

		BW_1	BW ₂	BW ₃
Interference	<i>m</i> [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
	Γ [MeV]	$440\substack{+230+110\\-200-240}$	$191\substack{+66+25\\-49-17}$	97^{+40+29}_{-29-26}

Comparison with theoretical calculations

- X(3872) studies
 - Measurement of X(3872) to $J/\psi \pi^+\pi^-$ (2013)
 - Observation of $B_s^0 \rightarrow X(3872)\phi$ (2020)
 - Evidence of X(3872) in PbPb collisions (2022)
- Observations of new exotic hadrons
 - Observation of X(4140) in $J/\psi\phi$ from $B^{\pm} \rightarrow J/\psi\phi K^{\pm}$ (2014)
 - Observation of new structure in ${
 m J}/\psi~{
 m J}/\psi o \mu^+\mu^-\mu^+\mu^-$ (2024)
- Observations of new decay channels (after 2022 only)
 - Observation of $B^0 \rightarrow \psi(2S)K^0_S\pi^+\pi^-$ (2022) $B^0_s \rightarrow \psi(2S)K^0_S$
 - Observation of $\,\Lambda_b^0
 ightarrow {
 m J}/\psi\,\Xi^-{
 m K}^+$ (2024)
 - Observation of $\Xi_b^- o \psi(2S) \Xi^-$ (2024)

 $J/\psi \Xi^{-}K^{+}$ channel

- Multi-body decays of b-hadrons may proceed through exotic intermediate resonances
 - E. g. pentaquark $J/\psi p$ structure in $\Lambda_b \rightarrow J/\psi p K^-$ observed by LHCb
 - $-\Lambda_h \rightarrow J/\psi \Xi^- K^+$ final state can unveil yet-unobserved (e.g. doubly-strange) pentaquarks
- First-time observation of $\Lambda_b \rightarrow J/\psi \Xi^- K^+$
 - In final states with $J/\psi \rightarrow \mu\mu$, $\Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^-$

р

Observation of $\Lambda_b \rightarrow J/\psi \Xi^- K^+$

- $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ branching fraction ratio measurement
 - Large systematics cancellation in the measured ratio R
 - Result dominated by low signal statistics

$$R = \frac{B(\Lambda_b \to J/\psi \Xi^- K^+)}{B(\Lambda_b \to \psi(2S)\Lambda)} = \frac{N_{signal}}{N_{ref.}} \times \frac{\epsilon_{signal}}{\epsilon_{ref.}} \times \frac{B(\psi(2S) \to J/\psi \pi^- \pi^+)}{B(\Xi^- \to \Lambda \pi^-)}$$

 $= [3.38 \pm 1.02 (stat.) \pm 0.61 (syst.) \pm 0.03 (B)] \%$

• Search for intermediate resonances

No evidence of resonant structures at this signal statistics

103 fb⁻¹ @ 13 TeV pp collision data

 $\begin{aligned} \mathcal{B}(B^0 \to \psi(2S) K^0_S \pi^+ \pi^-) / \mathcal{B}(B^0 \to \psi(2S) K^0_S) &= 0.480 \pm 0.013 \text{ (stat)} \pm 0.032 \text{ (syst)} \\ \mathcal{B}(B^0_s \to \psi(2S) K^0_S) / \mathcal{B}(B^0 \to \psi(2S) K^0_S) &= (3.33 \pm 0.69 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.34 \text{ (}f_s / f_d \text{))} \times 10^{-2} \end{aligned}$

EPJC 82 (2022) 499

 No evidence of new resonant structures at this signal statistics

$\Xi_{\rm b} \rightarrow \psi(2S)\Xi$ observation and Ξ_{b}^{*0} studies

- Increasing data statistics @LHC allows exploration of ground and excited Ξ_b states
- Weak ground Ξ_b decays: possible intermediate resonances or CP violation
- Measurements of both ground and excited (E^{*}_b) state properties constrain heavy quark EFT → better understanding of quark dynamics and hadronization
 - Full Run2 140 fb⁻¹
 - Ξ_{b}^{-} reconstructed via: $\Xi_{b}^{-} \rightarrow J/\psi\Xi^{-}, \Xi_{b}^{-} \rightarrow \psi(2S)(\rightarrow J/\psi\pi\pi)\Xi^{-}, \Xi_{b}^{-} \rightarrow \psi(2S)(\rightarrow \mu\mu)\Xi^{-}, \Xi_{b}^{-} \rightarrow J/\psi\Lambda K^{-}$ with $J/\psi \rightarrow \mu\mu$ and $\Xi^{-} \rightarrow \Lambda (p\pi)\pi^{-}$
 - $\Xi_{\rm b}^{*0}$ from fitting $\Xi_{\rm b}^{-}$ virtual track and π^{+} from PV
 - rich topology: leverage vertex refit, long Ξ and Λ lifetime, mass constraints, mass differences

$\Xi_{\rm b} \rightarrow \psi(2S)\Xi$ observation and Ξ_{b}^{*0} studies

First observation of $\Xi_{\rm b} \rightarrow \psi(2S)\Xi$

$\Xi_{\rm b} \rightarrow \psi(2S)\Xi$ observation and Ξ_{b}^{*0} studies

Novel measurements of b-baryon properties

PRD 110 (2024) 012002

Properties of \mathcal{Z}_b^{*0}

- Using $\Xi_b^{*0} \to \Xi_b^- \pi^+$ with multiple Ξ_b^- decays $(\psi(2S)\Xi^-, J/\psi \Xi^-, J/\psi \Lambda K^-, J/\psi \Sigma^0 K^-)$
- \mathcal{Z}_{b}^{*0} mass and decay width extracted in a fit to $\Delta M = M(\mathcal{Z}_{b}^{-}\pi^{+}) M(\mathcal{Z}_{b}^{-}) m_{\pi^{+}}^{PDG}$ \rightarrow Improved mass resolution wrt. $M(\mathcal{Z}_{b}^{-}\pi^{+})$

$$\begin{split} m_{\Xi_b^{*0}} &= 5952.4 \pm 0.1(\text{stat} + \text{syst}) \pm 0.6(m_{\Xi_b^-}) \text{ MeV} \\ \Gamma_{\Xi_b^{*0}} &= 0.87^{+0.22}_{-0.20}(\text{stat}) \pm 0.16(\text{syst}) \text{ MeV} \end{split}$$

Latest LHCb result m_0 5952.37 ± 0.02 ± 0.01 ± 0.6 (Ξ_b^-) $\Gamma(\Xi_b^{*0}) = 0.87 \pm 0.06 \pm 0.05$ MeV (Phys. Rev. Lett. 131 (2023) 171901)

• \mathcal{Z}_b^{*0} and \mathcal{Z}_b^- production cross-section ratio (in tight fidual region)

$$\frac{\sigma(pp \to \Xi_b^{*0} X) B(\Xi_b^{*0} \to \Xi_b^- \pi^+)}{\sigma(pp \to \Xi_b^- X)} = 0.23 \pm 0.04 \text{ (stat)} \pm 0.02 \text{ (syst)}$$

$$ightarrow \sim 1/_4$$
 of Ξ_b^- are produced in $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$

New conventional hadrons at LHC

https://www.nikhef.nl/~pkoppenb/particles.html

https://www.nikhef.nl/~pkoppenb/particles.html

New triggers in Run-3!

Backup

Spin Parity Analysis (on going)

Observation of triple J/ ψ

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$ = 272 +141-104 (stat) ± 17 (syst) fb

Nature Physics 19 (2023) 338

"6c" search in future?

- Consistent shape for X(6900) for 3 experiments
- Consistent shape for X(7100) for 3 experiments after scaling
- Consistent shape for X(6600) for CMS and ATLAS after scaling Hard to say between CMS/ATLAS and LHCb

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

 117 ± 24

• LHCb did not give parameters for BW1

 6927 ± 10

- CMS has a shoulder before BW1
- helps make BW1 distinct
- Does not describe 2 dips well

 112 ± 27

CMS

Model I

 6550 ± 10

CMS and LHCb Fit Comparison - 2

Fit CMS data with LHCb model II : "X(6700)" interferes with NRSPS + X(6900) + Bkg

40

20

- CMS obtained larger amplitude and wider width for X(6700)
- Does not describe X(6600) and below
- Does not describe X(7200) region

 $m_{_{J/\psi}J/\psi}$

GeV

CÉRN

CMS and ATLAS Fit Comparison

- ATLAS model A: analogous to LHCb model I, but 2 auxiliary BWs interfere with X(6900)
- ATLAS Model B: analogous to LHCb model II, one auxiliary BW interferes with NRSPS
- Both models describe the data well
 - the broad structure at the lower mass could result from other physical effects, such as the feed-down
- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance > 5σ

Total cross section, assuming unpolarized prompt J/ ψ J/ ψ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

• The inner structure of X(3872) affects its production in HI collision

Compact four quark state

D-D^{*} hadron molecule

Breakup by comoving particles → Suppress X(3872)

• Coalescence with particles in QGP \rightarrow Enhance X(3872)

