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Hadronic stress tensorHadronic stress tensor

F Pressure in the proton has become a hot topic.

F Promises of much interesting physics:

= Force distributions in the proton

= Mechanical stability conditions

= Understanding confinement?

F Empirical extractions happening at JLab!

= Burkert, Elouadrhiri & Girod, Nature (2018)

= Burkert, Elouadrhiri & Girod, 2104.02031

= Duran &al., Nature (2023)

Figure: Burkert, Elouadrhiri & Girod, Nature (2018)

https://inspirehep.net/literature/1673606
https://inspirehep.net/literature/1856069
https://inspirehep.net/literature/2110821
https://inspirehep.net/literature/1673606
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OutlineOutline

C1 What is the hadronic stress tensor?

C2 What are gravitational mechanical form factors?

C3 How do they entail stress/“pressure” distributions?

C4 What do these stress/“pressure” distributions mean?



The energy-momentum tensorThe energy-momentum tensor
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The energy-momentum tensorThe energy-momentum tensor

F The energy-momentum tensor describes density and flow of energy & momentum.

T 00(x) T 01(x) T 02(x) T 03(x)

T 10(x) T 11(x) T 12(x) T 13(x)

T 20(x) T 21(x) T 22(x) T 23(x)

T 30(x) T 31(x) T 32(x) T 33(x)





Energy density

Momentum densities

Energy fluxes

Stress tensor

T µν(x) =
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Stress as momentum flux densityStress as momentum flux density

F Continuity equation for closed system:

∂µT µν(x) = 0

= Energy and momentum are transmitted locally.

F Integral form for spatial components:

dP j (V )

dt
= d

dt

[∫
V

d3x T 0 j (x , t )

]
=−

∫
V

d3x∇i T i j (x , t ) =−
∮
∂V

dS n̂i T i j (x , t )

= Stress tensor tells us how momentum enters or leaves a region.

= Can happen by particle flow or local force transmission.
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Particle flux vs. forcesParticle flux vs. forces

Particle flux

T i j (x) = v i p jδ(3)(x −q)

Force

T i j (x) = n̂i n̂ j F

A

F Momentum can enter/leave region because particles enter/leave.

F Momentum can enter/leave region because of forces.

= Can produce positive or negative stress.

F Stress tensor includes both.

= Is the hadronic stress tensor due to motion or forces? (Or both?)
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Positive or negative pressure?Positive or negative pressure?

Positive pressure

Image fromWikimedia

Negative pressure

Fdown =−(
N m +M

)
g

Fup =+(
(N +1)m +M

)
g

Fg =−mg

F Same attractive force—gravity—in both cases.

∇i T i j =−ρg ẑ j = f j
grav

F Sign of pressure has nothing to do with attraction/repulsion!

= Positive stress is compressive (pushing).

= Negative stress is tensile (pulling).
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Cauchy’s first law of motionCauchy’s first law of motion

F Cauchy’s first law of motion: for a static, open system:

f j
net(x) = f j

external
(x)−∇i T i j (x) = 0

F Stress tensor can tell us how system responds to external forces.

= Important: external is force not part of the stress tensor!

F Works for fluids, solids, or any other classical continuum system.

F Several authors have proposed using this for quantum systems!

= Polyakov & Son, JHEP 09 (2018) 156

= Won, Kim & Kim, JHEP 05 (2024) 173

= AF, PRD 111 (2025) 034047

https://inspirehep.net/literature/1684634
https://inspirehep.net/literature/2709258
https://inspirehep.net/literature/2859392


Mechanical form factorsMechanical form factors



8/21

Gravitational form factorsGravitational form factors

F Energy-momentum tensor parametrized using gravitational form factors

F Form factor breakdown (spin-zero example):

〈p ′|T̂ µν
a (0)|p〉 = 2PµPνAa(∆2)+ ∆µ∆ν− gµν∆2

2
Da(∆2)+2M 2gµνc̄a(∆2)

= a = q, g labels constituent

Pµ = 1

2

(
p +p ′)µ

∆µ = (p ′−p)µ

p p ′

∆
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Gravitational form factors?Gravitational form factors?

F Energy-momentum tensor the source of gravitation in general relativity:

Rµν− 1

2
Rgµν = 8πGT µν

= They describe distribution of stuff that gravitates.

= It’s technically accurate, but may be unintentionally misleading.

F But we’re not really doing gravitational physics.

= These form factors aren’t measured using gravity.

= We’re not characterizing gravitational force.

F Maybe we should call them mechanical form factors.

= They characterize mechanical properties.

= We use them to study the strong nuclear force.



Spatial densities of the EMTSpatial densities of the EMT
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Spatial densities: non-relativisticSpatial densities: non-relativistic

〈Ψ|T̂ i j
a (x , t )|Ψ〉 =

∫
d3RΨ∗(R , t )

−
←→∇ i

(R)
←→∇ j

(R)

M
Aa(x −R)+ t

i j
a (x −R)

Ψ(R , t )

Dynamic stress
Internal stress

F Dynamic stress due to barycentric motion and wave packet dispersion.
= Smeared by the internal probability density.

F Internal stress due to internal motions or forces.
= Smeared by barycenter probability density.

= Conveniently related to the Breit frame Fourier transform:

t
i j
a (b) =

∫
d3∆

(2π)3

〈
∆
2

∣∣∣T̂ i j
a (0)

∣∣∣−∆
2

〉
2M

e− i∆·b

F Strictly non-relativistic breakdown.
= Afforded by Galilean symmetry (absoluteness of simultaneity).

= Relativistic generalization a source of controversy.
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Perspectives on relativistic EMT densitiesPerspectives on relativistic EMT densities

F Polyakov & Schweitzer: define the static EMT densities in terms of Breit frame:

t
µν

static(b) ≡
∫

d3∆

(2π)3

〈
∆
2

∣∣T̂ µν(0)
∣∣−∆

2

〉
2M

√
1+ ∆2

4M 2

e− i∆·b

= Most widely-used approach.

= hep-ph/0207153, PLB 555 (2003) 57, IJMPA (2018) 1830025

F Lorcé et al.: use Wigner phase-space formalism to set R = 0 and P = 0.
= Gives Polyakov & Schweitzer’s static EMT.

= EPCJ 79 (2019) 89

F Yang Li et al.: expand expectation values as tower of multipole moment densities:

〈Ψ|T̂ µν(x , t )|Ψ〉 ≈
∫

d3R
(
Ψ∗(R , t ) i

←→
∂t Ψ(R , t )

)
t
µν

static(b)+corrections

= Use spatially diffuse wave packet, zero average momentum.

= Gives Polyakov & Schweitzer’s static EMT as leading contribution.

= Corrections negligible if wave packet larger than Compton wavelength.

= PLB 838 (2023) 137676, 2405.06892

https://inspirehep.net/literature/590456
https://inspirehep.net/literature/599384
https://inspirehep.net/literature/1673717
https://inspirehep.net/literature/1699964
https://inspirehep.net/literature/2101770
https://inspirehep.net/literature/2785927
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More perspectives on relativistic EMT densitiesMore perspectives on relativistic EMT densities

F Lorcé et al. / AF & Miller: use light front densities.

t
µν

LF (b⊥) ≡
∫

d2∆⊥
(2π)2

〈
P+, ∆⊥

2

∣∣∣T̂ µν(0)
∣∣∣P+,−∆⊥

2

〉
2P+ e− i∆·b

= Only i , j ∈ {1,2}; only get 2D densities.

= Galilean symmetry allows barycenter/internal separation.

= EPCJ 79 (2019) 89, PRD 103 (2021) 094023

F Panteleeva et al.: use localized, zero average momentum wave packets.

= Similar result to light front, but restore third dimension.

= EPJC 83 (2023) 617, JHEP 07 (2023) 237

F AF&Miller: use light front time + Cartesian space.

= Still only 2D densities, but get 3×3 stress tensor.

= Separate wave packet & internal densities with factorization/smearing relations.

= PRD 107 (2023) 074036, PRD 108 (2023) 094026

https://inspirehep.net/literature/1699964
https://inspirehep.net/literature/1844411
https://inspirehep.net/literature/2183397
https://inspirehep.net/literature/2656002
https://inspirehep.net/literature/2634715
https://inspirehep.net/literature/2679261
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Status of relativistic EMT densitiesStatus of relativistic EMT densities

F Controversy is unresolved, but static EMT is good enough for practical purposes.

= Justified in wave packet approach of Li et al.

= Corrections negligible for realistic wave packets (AF & Miller, PRD 108 (2023) 034008)

F Given the static EMT though, what does the stress tensor actually mean?

= Formula for spin-half target:

t
i j
a (b) =

∫
d3∆

(2π)3

(
∆i∆ j −δi j∆2

4M
Da(∆2)−Mδi j c̄a(∆2)

)
e− i∆·b

https://inspirehep.net/literature/2163186


What are these stresses?What are these stresses?
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Stress as momentum flux densityStress as momentum flux density

F Recall: stress tensor is momentum flux density

dP j (V )

dt
=−

∮
∂V

dS n̂i T i j (x , t )

= Momentum can flow through particle movement or local force transmission

Particle flux

T i j (x) = v i p jδ(3)(x −q)

Force

T i j (x) = n̂i n̂ j F

A
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Forces between subcomponentsForces between subcomponents

F For an open system

f j
net(x , t )− dp j (x , t )

dt
=∇i T i j (x , t )

= Cauchy’s first law of motion

F Individual parton flavors are open systems!

∇i t
i j
a (b) =−M ∇ j

∫
d3∆

(2π)3 c̄a(∆2)e− i∆·b

= We can map out the average force on quarks in a target.
= The c̄q (∆2) form factor could probe the QCD force law!

D Polyakov & Son, JHEP 09 (2018) 156

D Won, Kim & Kim, JHEP 05 (2024) 173

D AF, PRD 111 (2025) 034047

shows Coulomb force can be recovered in hydrogen atom via c̄e (∆2)!

= Da(∆2) has zero divergence; its contribution vanished

https://inspirehep.net/literature/1684634
https://inspirehep.net/literature/2709258
https://inspirehep.net/literature/2859392
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What about the D-term?What about the D-term?

D(∆2) ≈ 0 D(∆2) ¿ 0

F Both donkeys have the same the same c̄(∆2).

∇i T i j =−ρg ẑ j

= Only their D-term differs.

= D-term encodes (potentially large) mutually-cancelling internal stresses.
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Radial and tangential stressesRadial and tangential stresses

F Normal projections of D-term give mutually-balancing forces in any direction

pn(b) = n̂i n̂ j

∫
d3∆

(2π)3

∆i∆ j −δi j∆2

4M
D(∆2)e− i∆·b

F Usually radial and tangential stresses are examined.
= Positive means compressive (pushing)—not repulsion

= Negative means tensile (pulling)—not attraction

(Light front calculation, AF & Miller 2021)
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Pressure and shear?Pressure and shear?

F Isotropic pressure is just the average normal stress:

piso = pr +pθ+pφ
3

= px +py +pz

3

F Shear stress is a pressure anisotropy.

= Measures how momentum flows in a direction

orthogonal to the momentum itself.

(Fig above: light front calculation, AF & Miller 2021)

(Fig on right: Steven Earle, Physical Geology)
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Sign of the D-termSign of the D-term
Pressure in proton: D(0) < 0 ... (BEG Nature)

Pressure in H atom: D(0) > 0 ... (AF PRD)

F von Laue condition: integral of isotropic pressure zero:∫
d3b piso(b) = 0

= Automatically satisfied for every hadron

F Sign of D-term related to balance of compression & tension:

D(0) = M
∫

d3b b2piso(b)

= D(0) < 0 would mean the pulling pressure is further way.

F Polyakov’s conjecture: D(0) < 0 for hadrons

= Violated by electron
Metz, Pasquini & Rodini, PLB 820 (2021) 136501

= Violated by photon
AF & Cosyn, PRD 106 (2022) 114014

= Violated by hydrogen atom
Ji, Yang & Liu, PRD 110 (2024) 114045

AF, PRD 111 (2025) 034047

https://inspirehep.net/literature/1857568
https://inspirehep.net/literature/2121018
https://inspirehep.net/literature/2134228
https://inspirehep.net/literature/2859392


Wrapping upWrapping up
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SummarySummary

F Stress tensor describes momentum flux densities.

= Most authors (but not all!) think they’re actually stresses too.

= Positive & negative stresses have nothing to do with attractive vs. repulsive forces.

F Divergence of stress tensor gives forces between sub-components.

= This makes c̄q (∆2) the most exciting form factor.

= We could potentially map out the QCD force law!

F Status of D(0) < 0 stability condition in question.

= Counterexamples are electromagnetic, few-body systems.

= Need understanding of why D(0) < 0 for hadrons.

F No consensus on proper relativistic densities to use.

= Most authors seem to accept Polyakov’s static EMT (Breit frame density) though.
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CreditsCredits

F SciDAC award: Femtoscale Imaging of Nuclei using Exascale Platforms

F Jefferson Science Associates

F DOE contract No. DE-AC05-06OR23177

Thank you for your time!
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