Exploring Hadron Structure Through Monte-Carlo Fits and Model Calculations

Chris Cocuzza

www.jlab.org/theory/jam

March 16, 2025

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

- Collinear factorization in perturbative QCD
- Simultaneous determinations of PDFs, FFs, etc.
- Monte Carlo methods for Bayesian inference

Hadron Structure

3

2. Spin-Averaged Parton Distribution Functions

- 3. Extraction of Nuclear Effects
- 4. Helicity Parton Distribution Functions
- 5. Di-Hadron Production and Transversity Parton Distribution Functions
- 6. Summary and Outlook

C. Cocuzza, W. Melnitchouk, A. Metz, and N. Sato, Phys. Rev. D. **104**, 074031 (2021)

Cannot be explained from gluons splitting into quark-antiquark pairs

Kinematic Coverage (Spin-Averaged)

Deep Inelastic Scattering	BCDMS, NMC, SLAC, HERA, Jefferson Lab	3863	points
Drell-Yan	Fermilab E866, E906	205	points
W/Z Boson Production	CDF/D0, STAR, LHCb, CMS	153	points
Jets	CDF/D0, STAR	200	points

Kinematic Coverage (Spin-Averaged)

Kinematic Coverage (Spin-Averaged)

SeaQuest and NuSea Quality of Fit

$$\frac{\sigma_{pD}}{2\sigma_{pp}}\Big|_{x_1 \gg x_2} \approx \frac{1}{2} \Big[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \Big]$$

SeaQuest and NuSea Quality of Fit

$$\frac{\sigma_{pD}}{2\sigma_{pp}}\Big|_{x_1 \gg x_2} \approx \frac{1}{2} \Big[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \Big]$$

Well-known tension between NuSea and SeaQuest

STAR Quality of Fit

Impact from STAR and SeaQuest

Impact from STAR and SeaQuest

STAR: Moderate reduction of uncertainties

Impact from STAR and SeaQuest

STAR: Moderate reduction of uncertainties

SeaQuest: Large reduction of uncertainties, $\bar{d}/\bar{u} > 1$ up to $x \approx 0.4$

- I. Introduction
- 2. Spin-Averaged Parton Distribution Functions
- 3. Extraction of Nuclear Effects
- 4. Helicity Parton Distribution Functions
- 5. Di-Hadron Production and Transversity Parton Distribution Functions
- 6. Summary and Outlook

C. Cocuzza, C. E. Keppel, W. Melnitchouk, A. Metz, N. Sato, and A. W. Thomas, Phys. Rev. Lett. **127**, 242001 (2021)

Kinematic Coverage

Deep Inelastic Scattering	BCDMS, NMC, SLAC, HERA, Jefferson Lab	3863	points
Drell-Yan	Fermilab E866	250	points
W/Z Boson Production	Tevatron CDF/D0, LHC ATLAS/CMS	239	points
Jets	Tevatron CDF/D0, RHIC STAR	196	points

11

Kinematic Coverage

Deep Inelastic Scattering	BCDMS, NMC, SLAC, HERA, Jefferson Lab	3863	points
Drell-Yan	Fermilab E866	250	points
W/Z Boson Production	Tevatron CDF/D0, LHC ATLAS/CMS	239	points
Jets	Tevatron CDF/D0, RHIC STAR	196	points

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/u Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

Impact on *d/u*

Impact on *d/u*

d/u ratio largely constrained by W boson production data (mostly Tevatron)

Impact on F_2^n/F_2^p

Impact on F_2^n/F_2^p

Slight shift towards MARATHON + KP model result

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/u Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

16

Isospin Symmetry

How to relate quarks between protons and neutrons?
How to relate quarks between protons and neutrons?

It is usually assumed that...

$$u_{p/A} = d_{n/A}$$

$$d_{p/A} = u_{n/A}$$

How to relate quarks between protons and neutrons?

It is usually assumed that...

$$u_{p/A} = d_{n/A}$$

$$d_{p/A} = u_{n/A}$$

Free nucleon

How to relate quarks between protons and neutrons?

It is usually assumed that...

 $u_{p/A} = d_{n/A}$

 $d_{p/A} = u_{n/A}$

Free nucleon

(Approx.) Symmetric Nuclei $(D, {}^{56}\text{Fe})$

How to relate quarks between protons and neutrons?

It is usually assumed that...

$$u_{p/A} = d_{n/A}$$

$$d_{p/A} = u_{n/A}$$

Free nucleon

(Approx.) Symmetric Nuclei $(D, {}^{56}Fe)$

Asymmetric Nuclei (³He,³ H,¹⁹⁷ Au)

17

Isovector Effect

I. C. Cloet, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

Isovector Effect

I. C. Cloet, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

17

Isovector Effect

I. C. Cloet, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

17

Isovector Effect

I. C. Cloet, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

Extraction of Nuclear Effects

Data vs. Theory

First global QCD analysis of JLab ³He/D and MARATHON data

Extraction of Nuclear Effects

First global QCD analysis of JLab ³He/D and MARATHON data

Isovector Extraction

$$\Delta_{3}^{q} \equiv \frac{q_{p/^{3}H} - q_{p/^{3}He}}{q_{p/^{3}H} + q_{p/^{3}He}}$$

Isovector Extraction

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/u Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

Future Work

MARATHON released new results on ${}^{3}\text{He}/D$ and ${}^{3}\text{H}/D$ very recently. We are able to fit this data well

Future Work

- I. Introduction
- 2. Spin-Averaged Parton Distribution Functions
- 3. Extraction of Nuclear Effects
- 4. Helicity Parton Distribution Functions
- 5. Di-Hadron Production and Transversity Parton Distribution Functions
- 6. Summary and Outlook

C. Cocuzza, W. Melnitchouk, A. Metz, and N. Sato, Phys. Rev. D. **106**, L031502 (2022)

Kinematic Coverage (Helicity)

Kinematic Coverage (Helicity)

Kinematic Coverage (Helicity)

Helicity Parton Distribution Functions

STAR Quality of Fit

$$A_L^{W^+}(y_W) \propto \frac{\Delta \bar{d}(x_1)u(x_2) - \Delta u(x_1)\bar{d}(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)\bar{d}(x_2)}$$
$$A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}$$

Positivity Constraints: $\left|\Delta f(x,Q^2)\right| < f(x,Q^2)$

Positivity Constraints: $|\Delta f(x,Q^2)| < f(x,Q^2)$

Can MS parton distributions be negative? Alessandro Candido, Stefano Forte and Felix Hekhorn

Positivity and renormalization of parton densities

John Collins, Ted C. Rogers, Nobuo Sato

25

Can MS parton distributions be negative? Alessandro Candido, Stefano Forte and Felix Hekhorn

Positivity and renormalization of parton densities

John Collins, Ted C. Rogers, Nobuo Sato

DSSV08 shows positive asymmetry at low x < 0.1

25

Can MS parton distributions be negative? Alessandro Candido, Stefano Forte and Felix Hekhorn

Positivity and renormalization of parton densities

John Collins, Ted C. Rogers, Nobuo Sato

DSSV08 shows positive asymmetry at low x < 0.1

NNPDF shows hint of positive asymmetry at intermediate *x*

25

DSSV08 shows positive asymmetry at low x < 0.1

NNPDF shows hint of positive asymmetry at intermediate *x*

Our result is strongly positive in both regions of *x* 1. Introduction

- 2. Spin-Averaged Parton Distribution Functions
- 3. Extraction of Nuclear Effects
- 4. Helicity Parton Distribution Functions
- 5. Di-Hadron Production and Transversity Parton Distribution Functions
- 6. Summary and Outlook

C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, and R. Seidl, Phys. Rev. Lett. **132**, 091901 (2024)

C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, and R. Seidl, Phys. Rev. D **109**, 034024 (2024)

Approaches to Extract Transversity

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018)

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018)

TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018) TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Lattice QCD

27

- ETMC Collaboration
- PNDME Collaboration
- LHPC Collaboration

C. Alexandrou et al., Phys. Rev. D 104, no. 5, 054503 (2021)

JAM Global Analysis in the collinear DiFF Approach

R. Seidl *et al.*, Phys. Rev. D **96**, no. 3, 032005 (2017)

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

Tensor Charges

$$\begin{split} \delta u &\equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}), \\ \delta d &\equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}), \\ g_T &\equiv \delta u - \delta d, \end{split}$$

Tensor Charges

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $g_T \equiv \delta u - \delta d,$

QCD Pheno for Transversity

> Tensor Charges

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022); Zheng, *et al.* (2024); Boglione, *et al.* (2024)

> Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $g_T \equiv \delta u - \delta d,$

QCD Pheno for Transversity

> Tensor Charges

> > Lattice QCD, Models

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022); Zheng, *et al.* (2024); Boglione, *et al.* (2024)

> Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

> > He, Ji (1995); Barone, et al. (1997); Schweitzer, et al. (2001); Gamberg, Goldstein (2001); Pasquini, et al. (2005); Wakamatsu (2007); Lorce (2009); Gupta, et al. (2018); Yamanaka, et al. (2018); Hasan, et al. (2019); Alexandrou, et al. (2019, 2023); Yamanaka, et al. (2013); Pitschmann, et al. (2015); Xu, et al. (2015); Wang, et al. (2018); Liu, et al. (2019); Gao, et al. (2023);

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $g_T \equiv \delta u - \delta d,$

Herczeg (2001); Erler, Ramsey-Musolf (2005); Pospelov, Ritz (2005); Severijns, *et al.* (2006); Cirigliano, *et al.* (2013); Courtoy, *et al.* (2013); Yamanaka, *et al.* (2015); Yamanaka, *et al.* (2017); Liu, *et al.* (2018); Gonzalez-Alonso, *et al.* (2019)

QCD Pheno for Transversity

Tensor Charges

Low-Energy BSM Physics

Lattice QCD, Models

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022); Zheng, *et al.* (2024); Boglione, *et al.* (2024)

Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

> He, Ji (1995); Barone, et al. (1997); Schweitzer, et al. (2001); Gamberg, Goldstein (2001); Pasquini, et al. (2005); Wakamatsu (2007); Lorce (2009); Gupta, et al. (2018); Yamanaka, et al. (2018); Hasan, et al. (2019); Alexandrou, et al. (2019, 2023); Yamanaka, et al. (2013); Pitschmann, et al. (2015); Xu, et al. (2015); Wang, et al. (2018); Liu, et al. (2019); Gao, et al. (2023);
The Transverse Spin Puzzle?

The Transverse Spin Puzzle?

The Transverse Spin Puzzle?

The Transverse Spin Puzzle?

The Transverse Spin Puzzle?

The Transverse Spin Puzzle?

Extracted DiFFs (3D)

Extracted IFFs (3D)

Data for PDFs

Data for PDFs

Data for PDFs

Transversity PDFs

Transversity PDFs

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$
$$\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$$
$$g_T \equiv \delta u - \delta d,$$

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

 $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$
 $g_T \equiv \delta u - \delta d,$

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

$$\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$$

$$g_T \equiv \delta u - \delta d,$$

Large
$$x \gtrsim 0.3$$

Soffer Bound: $|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$

J. Soffer, Phys. Rev. Lett. 74, 1292-1294 (1995)

Y. V. Kovchegov and M. D. Sievert, Phys. Rev. D 99, 054033 (2019)

Tensor Charges

Tensor Charges

Tensor Charges

Consistent with RB18 and JAM3D* (no LQCD). What happens if we include LQCD in the fit?

Quality of Fit

		$\chi^2_{ m red}$		
Experiment	$N_{ m dat}$	w/ LQCD	no LQCD	
Belle (cross section) [63]	1094	1.01	1.01	
Belle (Artru-Collins) [92]	183	0.74	0.73	
HERMES [72]	12	1.13	1.10	
COMPASS (p) [71]	26	1.24	0.75	
COMPASS (D) [71]	26	0.78	0.76	
STAR (2015) [94]	24	1.47	1.67	
STAR (2018) [64]	106	1.20	1.04	
ETMC δu [28]	1	0.71		
ETMC δd [28]	1	1.02		
PNDME δu [25]	1	8.68		
PNDME δd [25]	1	0.04		
Total χ^2_{red} (N _{dat})		1.01 (1475)	0.98 (1471)	

Quality of Fit

		$\chi^2_{ m red}$	
Experiment	$N_{\rm dat}$	w/ LQCD	no LQCD
Belle (cross section) [63]	1094	1.01	1.01
Belle (Artru-Collins) [92]	183	0.74	0.73
HERMES [72]	12	1.13	1.10
COMPASS (p) [71]	26	1.24	0.75
COMPASS (D) [71]	26	0.78	0.76
STAR (2015) [94]	24	1.47	1.67
STAR (2018) [64]	106	1.20	1.04
ETMC δu [28]	1	0.71	
ETMC δd [28]	1	1.02	
PNDME δu [25]	1	8.68	
PNDME δd [25]	1	0.04	
Total χ^2_{red} (N _{dat})		1.01 (1475)	0.98 (1471)

Physical Pion Mass $N_f = 2 + 1 + 1$ Use δu and δd instead of g_T

Transversity PDFs (w/ LQCD)

Transversity PDFs (w/ LQCD)

JAM3D* = JAM3D-22 (w/ LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 27) + δu , δd from ETMC & PNDME (instead of g_T from ETMC)

Transversity PDFs (w/ LQCD)

JAM3D* = JAM3D-22 (w/ LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 27) + δu , δd from ETMC & PNDME (instead of g_T from ETMC) 38

JAMDiFF (w/ LQCD) and JAM3D* (w/ LQCD) largely agree

Tensor Charges (w/ LQCD)

Tensor Charges (w/ LQCD)

Noticeable shift from including lattice data

Tensor Charges (w/ LQCD)

Likelihood function $\mathscr{L} = \exp(-\chi^2/2)$ does not guarantee that errors overlap when using Monte Carlo method

39

Noticeable shift from including lattice data

Tensor Charges (w/ LQCD)

Likelihood function $\mathscr{L} = \exp(-\chi^2/2)$ does not guarantee that errors overlap when using Monte Carlo method

M.N. Constantini et al., JHEP 12, 064 (2024)

N.T. Hunt-Smith *et al.*, Comput. Phys. Commun. **296**, 109059 (2024)

N. T. Hunt-Smith et al., Phys. Rev. D 106, 036003 (2022)

Noticeable shift from including lattice data

Currently looking into Markov Chain Monte Carlo to better assess uncertainties.

Future Work

Currently working on including DiFF data, TMD data, and LQCD calculations into a single global QCD analysis.

40

The ultimate global QCD analysis for transversity!

JAM3D + JAMDiFF = JAM3DiFF

Kinematics and Functions

Process	Collaborations	Points
SIA	BaBaR, Belle, BESIII ≿	176
SIDIS Asym.	COMPASS, HERMES 🗧	525
DY	COMPASS	15
W/Z	STAR	17
pp AN	STAR, AnDY	44
Hadron-in-jet	STAR	708

Kinematics and Functions

Process	Collaborations	Points
SIA	BaBaR, Belle, BESIII 🝃	176
SIDIS Asym.	COMPASS, HERMES 🗧	525
DY	COMPASS	15
W/Z	STAR	17
pp AN	STAR, AnDY	44
Hadron-in-jet	STAR	708

41

Transversity $h_1 : u, d, \bar{u}, \bar{d} + \text{widths}$

Kinematics and Functions

Process	Collaborations	Points
SIA	BaBaR, Belle, BESIII 🝃	176
SIDIS Asym.	COMPASS, HERMES 🗧	525
DY	COMPASS	15
W/Z	STAR	17
pp AN	STAR, AnDY	44
Hadron-in-jet	STAR	708

41

Transversity h_1	$: u, d, \overline{u}, \overline{d}$ +	- widths
Sivers $f^{\perp(1)} \cdot u$	$d \bar{u} \bar{d} s \bar{s} -$	- widths

J 17

Kinematics and Functions

Process	Collaborations		Points
SIA	BaBaR, Belle, BESIII	X	176
SIDIS Asym.	COMPASS, HERMES	AF	525
DY	COMPASS		15
W/Z	STAR		17
pp AN	STAR, AnDY	E	44
Hadron-in-jet	STAR	PR	708

41

Transversity h_1	•	u, d, \bar{u}, \bar{d}	+	widths

Sivers
$$f_{1T}^{\perp(1)}$$
: $u, d, \bar{u}, \bar{d}, s, \bar{s}$ + widths

Collins (pion) $H_1^{\perp(1)}$: fav., unfav. + widths
Kinematics and Functions

Process	Collaborations		Points
SIA	BaBaR, Belle, BESIII	X	176
SIDIS Asym.	COMPASS, HERMES	AF	525
DY	COMPASS		15
W/Z	STAR		17
pp AN	STAR, AnDY	E	44
Hadron-in-jet	STAR	PR	708

41

Transversity h_1	•	u, d, \bar{u}, \bar{d}	+	widths

Sivers
$$f_{1T}^{\perp(1)}$$
: $u, d, \bar{u}, \bar{d}, s, \bar{s}$ + widths

Collins (pion) $H_1^{\perp(1)}$: fav., unfav. + widths

Fwist-3 FF (pion)
$$\tilde{H}$$
: fav., unfav.

Hadron-in-jet

Hadron-in-jet

42

First global QCD analysis to include Hadron-in-jet data!

Quality of Fit and Inclusion of LQCD

Process	Points	chi2 (no LQCD)	chi2 (w/ LQCD)
SIA	176	1.09	1.15
SIDIS	1050	1.38	1.38
DY	15	0.24	0.24
W/Z	17	1.71	1.68
pp AN	44	1.89	1.80
Hadron-in-jet	708	1.03	1.03
	4		0.92
TOTAL	2014	- 1.24	- 1.24

Quality of Fit and Inclusion of LQCD

Process	Points	chi2 (no LQCD)	chi2 (w/ LQCD)
SIA	176	1.09	1.15
SIDIS	1050	1.38	1.38
DY	15	0.24	0.24
W/Z	17	1.71	1.68
pp AN	44	1.89	1.80
Hadron-in-jet	708	1.03	1.03
LQCD	4		0.92
TOTAL	2014	1.24	- 1.24

43

Inclusion of LQCD barely affects description of JAM3D data!

- 1. Introduction
- 2. Spin-Averaged Parton Distribution Functions
- 3. Extraction of Nuclear Effects
- 4. Helicity Parton Distribution Functions
- 5. Di-Hadron Production and Transversity Parton Distribution Functions
- 6. Summary and Outlook

Summary

Summary

Summary

Isovector EMC Effect

Summary

Isovector EMC Effect Δ_3^q 0.10 $Q^2 = 10 \text{ GeV}^2$ 0.05 0.00 -0.05-u- d-0.10E 0.2 0.4 0.6 0.8 \boldsymbol{x} $_{0.06} \mid x(\Delta \bar{u} - \Delta \bar{d})$ 0.04 🗾 baseline +STAR $ar{d}/ar{u}$ 0.02+SeaQuest Sea $x(ar{d}-ar{u})$ $0.06 \mid Q^2 = 10 \text{ GeV}^2$ Asymmetries 0.04 $Q^2 = 10 \text{ GeV}^2$ 0.000.02

0.5

 $\delta/\delta_{
m baseline}$

0.2

0.1

 $^{0.3}$ \boldsymbol{x}

0.4

0.01

Transverse Spin Puzzle

45

📃 no W

JAM

JAM

0.1

NNPDFpol1.1DSSV08

0.3

x

Electron Ion Collider (EIC) + JLab 12 GeV Upgrade

46

First polarized electron-ion collider

Electron Ion Collider (EIC) + JLab 12 GeV Upgrade

46

First polarized electron-ion collider

Electron Ion Collider (EIC) + JLab 12 GeV Upgrade

First polarized electron-ion collider

MARATHON data on ${}^{3}\text{He}/D$ and ${}^{3}\text{H}/D$ + Spectator tagged DIS + precise high x DIS data

46

Electron Ion Collider (EIC) + JLab 12 GeV Upgrade

First polarized electron-ion collider

add new hall

new cryomodules

ouble crvo

upgrade magnets and power supplies

12 GeV UPGRADE

upgrade

5 new

crvomodule

L. Gamberg et al., Phys. Lett. B 816, 136255 (2021)

46

D. F. Geesaman and P. E. Reimer, Rep. Prog. Phys. **82**, 046301 (2019)

MARATHON data on ${}^{3}\text{He}/D$ and ${}^{3}\text{H}/D$ + Spectator tagged DIS + precise high *x* DIS data

Collaboration

Andreas Metz

Leonard Gamberg

Ralf Seidl

Wally Melnitchouk

Daniel Pitonyak

Lebanon Valley College

Alexey Prokudin 47

Thia Keppel

Thank you to Yiyu Zhou and Patrick Barry for helpful discussions

Hanjie Liu

Extra

Internal Structure of Hadrons

Hadrons (such as protons) are composed of partons (quarks and gluons), bound by the strong interaction [Quantum Chromodynamics (QCD)]

49

Internal Structure of Hadrons

Hadrons (such as protons) are composed of partons (quarks and gluons), bound by the strong interaction [Quantum Chromodynamics (QCD)]

The goal is to characterize the internal structure of hadrons and hadron formation

49

Internal Structure of Hadrons

Hadrons (such as protons) are composed of partons (quarks and gluons), bound by the strong interaction [Quantum Chromodynamics (QCD)]

The goal is to characterize the internal structure of hadrons and hadron formation

Information can be gained through model calculations and experiments acting as high energy probes

- *x*: Momentum fraction (parton/hadron)
- \vec{k}_{\perp} : Transverse momentum

Partonic Functions

x: Momentum fraction (parton/hadron)

 \vec{k}_{\perp} : Transverse momentum

Generalized Transverse Momentum Dependent Distribution (GTMD)

$$W(x, \overrightarrow{k}_{\perp}, \xi, \overrightarrow{\Delta}_{\perp})$$

 ξ and $\overrightarrow{\Delta}_{\perp}$ describe change in hadron's momentum

50

Parton Distribution Functions

PDFs describe the 1-D momentum distributions of quarks, antiquarks, and gluons within a hadron

Parton Distribution Functions

PDFs describe the 1-D momentum distributions of quarks, antiquarks, and gluons within a hadron

Hadron Spin (relative to momentum)	PDF
Averaged	Unpolarized
Parallel	Helicity
Transverse	Transversity

Parton Distribution Functions

PDFs describe the 1-D momentum distributions of quarks, antiquarks, and gluons within a hadron

Hadron Spin (relative to momentum)	PDF
Averaged	Unpolarized
Parallel	Helicity
Transverse	Transversity

<u>The Question</u>: How do we gain information on partonic functions?

How do we gain information on partonic functions?

52

Model Calculations

How do we gain information on partonic functions?

52

Model Calculations

How do we gain information on partonic functions?

Model Calculations

Global QCD Analysis

52

How do we gain information on partonic functions?

12 GeV UPGRADE

upgrade existing Halls 5 new cryomodule

Model Calculations

Global QCD Analysis

52

$$\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j$$

upgrade magnets and power supplies
How do we gain information on partonic functions?

Model Calculations

 $0.005 \ \boldsymbol{x} \ -0.4$

0.2

x 0.

0.0

-0.2

0.000

-0.010

-0.005

52

How do we gain information on partonic functions?

52

How do we gain information on partonic functions?

52

Lattice QCD

How do we gain information on partonic functions?

Lattice QCD

52

 $h_{\Gamma}^{\Upsilon}(z,P_3) = \langle N(P_3) | \overline{\psi}(z) \Upsilon \Gamma W(z) \psi(0) | N(P_3) \rangle$

How do we gain information on partonic functions?

52

C. Alexandrou et al., Phys. Rev. D 104, no. 5, 054503 (2021)

How do we gain information on partonic functions?

52

53

A Global Analysis

Factorization

$$\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j + \mathcal{O}(1/Q)$$

Factorization

Experimentally measured cross-section

$$\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j + \mathcal{O}(1/Q)$$

Factorization

Experimentally measured cross-section

$$\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j + \mathcal{O}(1/Q)$$

"Hard part" (process dependent) Cross-section at parton level Calculated in perturbative QCD

Factorization

Experimentally measured cross-section

"Soft part" (process independent) Describes internal structure

 $\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j + \mathcal{O}(1/Q)$

"Hard part" (process dependent) Cross-section at parton level Calculated in perturbative QCD

How do global QCD analyses work?

55

Parameterize PDFs at input scale $Q_0^2 = m_c^2$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

How do global QCD analyses work?

Parameterize PDFs at input scale $Q_0^2 = m_c^2$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

Evolve PDFs using DGLAP

$$\frac{d}{d \ln(\mu^2)} f_i(x,\mu) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z,\mu) f_j(\frac{x}{z},\mu)$$

How do global QCD analyses work?

Parameterize PDFs at input scale $Q_0^2 = m_c^2$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$

Calculate Observables

$$d\sigma^{pp} = \sum_{ij} H^{pp}_{ij} \otimes f_i \otimes f_j$$

The χ^2 function

$$\chi^2(\boldsymbol{a}) = \sum_{i,e} \left(\frac{d_{i,e} - \sum_k r_e^k \beta_{i,e}^k - T_{i,e}(\boldsymbol{a})/N_e}{\alpha_{i,e}} \right)^2 + \sum_k \left(r_e^k \right)^2 + \left(\frac{1 - N_e}{\delta N_e} \right)^2$$

The χ^2 function

The χ^2 function

The χ^2 function

The χ^2 function

The χ^2 function

Bayes' Theorem

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^2(\boldsymbol{a}, \text{data})\right)$$

57

Bayes' Theorem

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^{2}(\boldsymbol{a}, \text{data})\right)$$
Bayes' Theorem
$$\mathcal{P}(\boldsymbol{a}|\text{data}) \sim \mathcal{L}(\boldsymbol{a}, \text{data}) \pi(\boldsymbol{a})$$
Posterior Beliefs
$$\mathcal{P}(\boldsymbol{a}|\text{data}) \qquad \mathcal{L}(\boldsymbol{a}, \text{data})$$
Prior Beliefs
Prior Beliefs

 $\left| \tilde{\sigma} = \sigma + N(0,1) \alpha \right|$

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

 $E[O] = \int d^n a \ \rho(\mathbf{a} \mid data) \ O(\mathbf{a})$ $V[O] = \int d^n a \ \rho(\mathbf{a} \mid data) \ \left[O(\mathbf{a}) - E[O]\right]^2$

Exact, but $n = \mathcal{O}(100)!$

59

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

 $E[O] = \int d^{n}a \ \rho(a \mid data) \ O(a)$ $V[O] = \int d^{n}a \ \rho(a \mid data) \ \left[O(a) - E[O]\right]^{2}$ Build an MC ensemble

Exact, but $n = \mathcal{O}(100)!$

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

 $E[O] = \int d^n a \ \rho(\boldsymbol{a} \,|\, data) \ O(\boldsymbol{a})$ Exact, but $V[O] = \left[d^n a \ \rho(\boldsymbol{a} \,|\, data) \ \left[O(\boldsymbol{a}) - E[O] \right]^2 \right]$ n = O(100)!Build an MC ensemble $\begin{vmatrix} E[O] \approx \frac{1}{N} \sum_{k} O(a_k) \\ V[O] \approx \frac{1}{N} \sum_{k}^{k} \left[O(a_k) - E[O] \right]^2 \end{vmatrix}$ Average over k sets of the parameters (replicas)

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

$$E[O] = \int d^{n}a \ \rho(a \mid data) \ O(a)$$

$$V[O] = \int d^{n}a \ \rho(a \mid data) \ [O(a) - E[O]]^{2}$$

Build an MC ensemble

$$E[O] \approx \frac{1}{N} \sum_{k}^{k} O(a_{k})$$

$$V[O] \approx \frac{1}{N} \sum_{k}^{k} [O(a_{k}) - E[O]]^{2}$$

Average over k sets of the parameters (replicas)

0.4 JAM15 (\mathbf{a}) 0.30.2 0.10.0 -0.1 $- x\Delta u^+$ (**b**) 0.4 $x \Delta d^+$ 0.3 $x\Delta s^+$ 0.2 $- x \Delta q$ 0.10.0 -0.1 10^{-3} 10^{-2} 0.1 0.3 0.5 0.7

Scalar Diquark Model (SDM)

60

L. Gamberg, Z. B. Kang, I. Vitev, and H. Xing, Phys. Lett. B 743, 112 (2015)

Scalar Diquark Model (SDM)

Model Parameters

M = 0.939 GeV $m_q = 0.35 \text{ GeV}$ $m_s = 0.70 \text{ GeV}$

L. Gamberg, Z. B. Kang, I. Vitev, and H. Xing, Phys. Lett. B 743, 112 (2015)

General Parameters

Nucleon-Quark-Diquark coupling: g = 1Cut-off for $|\vec{k}_{\perp}|$ integration: $\Lambda = 1$ GeV Transverse momentum transfer: $|\vec{\Delta}_{\perp}| = 0$ GeV 60

Scalar Diquark Model (SDM)

Model Parameters

M = 0.939 GeV $m_q = 0.35 \text{ GeV}$ $m_s = 0.70 \text{ GeV}$

L. Gamberg, Z. B. Kang, I. Vitev, and H. Xing, Phys. Lett. B 743, 112 (2015)

General Parameters

Nucleon-Quark-Diquark coupling:
$$g = 1$$

Cut-off for $|\vec{k}_{\perp}|$ integration: $\Lambda = 1$ GeV
Transverse momentum transfer: $|\vec{\Delta}_{\perp}| = 0$ GeV

60

General conclusions hold regardless of parameter choices

Part 3: Helicity Sea Asymmetry

Quark and Antiquark Polarizations

Part 3: Helicity PDFs

Spin Up/Down PDFs

Part 3: Helicity PDFs

Spin Up/Down PDFs

Extraction of Nuclear and Higher Twist Effects

EMC Ratios

$$R(D) = \frac{F_2^D}{(F_2^p + F_2^n)}$$
$$R(^{3}\text{He}) = \frac{F_2^{^{3}\text{He}}}{(2F_2^p + F_2^n)}$$
$$R(^{3}\text{H}) = \frac{F_2^{^{3}\text{H}}}{(F_2^p + 2F_2^n)}$$
$$\mathscr{R} = \frac{R(^{^{3}}\text{He})}{R(^{^{3}}\text{H})}$$

Extraction of Nuclear and Higher Twist Effects

EMC Ratios

$$R(D) = \frac{F_2^D}{(F_2^p + F_2^n)}$$

$$R(^{3}\text{He}) = \frac{F_2^{^{3}\text{He}}}{(2F_2^p + F_2^n)}$$

$$R(^{3}\text{H}) = \frac{F_2^{^{3}\text{H}}}{(F_2^p + 2F_2^n)}$$

$$\mathscr{R} = \frac{R(^{^{3}}\text{He})}{R(^{^{3}}\text{H})}$$

Significant differences between JAM result and KP model result

Sources of Asymmetry

Sources of Asymmetry

Comparison with Pion Cloud Model

Comparison with Pion Cloud Model

66

Good agreement with pion cloud model

Symmetries

$(u, d) \times (p, n) \times (D,^{3} \text{He},^{3} \text{H}) = 12$ Functions

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3He} \equiv \delta d_{n/3H}$$

$$\delta d_{p/3H} \equiv \delta d_{n/3He}$$

$$\delta d_{p/3H} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3H} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3H} \equiv \delta u_{n/3He}$$

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3He} \equiv \delta d_{n/3H}$$

$$\delta d_{p/3H} \equiv \delta d_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3He} \equiv \delta d_{n/3H}$$

$$\delta d_{p/3H} \equiv \delta d_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3H} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3He} \equiv \delta d_{n/3H}$$

$$\delta d_{p/3He} \equiv \delta d_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

$$\begin{split} \delta u_{p/D} &\equiv \delta d_{n/D} \\ \delta d_{p/D} &\equiv \delta u_{n/D} \\ \delta u_{p/3}_{He} &\equiv \delta d_{n/3}_{H} \\ \delta d_{p/3}_{He} &\equiv \delta d_{n/3}_{He} \\ \delta d_{p/3}_{He} &\equiv \delta u_{n/3}_{He} \end{split}$$

$$\begin{aligned} & \left(u, d \right) \times (p, n) \times (D,^{3}_{He},^{3}_{He}) = 12 \text{ Functions} \\ \delta u_{p/D} &\approx \delta u_{p/3}_{He} \\ \delta d_{p/D} &\approx \delta d_{p/3}_{He} \\ \delta d_{p/3}_{He} &\approx 2 \delta d_{p/3}_{He} \\ \hline No \text{ Isovector} \\ (\text{Model}) \end{aligned}$$

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3}_{He} \equiv \delta d_{n/3}_{H}$$

$$\delta d_{p/3}_{He} \equiv \delta u_{n/3}_{He}$$

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3}He \equiv \delta d_{n/3}H$$

$$\delta d_{p/3}He \equiv \delta u_{n/3}He$$

Helicity Parton Distribution Functions

Proton Spin Contributions

Helicity Parton Distribution Functions

Proton Spin Contributions

Inclusion of RHIC W/Z data shows that $\Delta \bar{u} \ (\Delta \bar{d})$ contribution is small and positive (negative)

Helicity Parton Distribution Functions

Proton Spin Contributions

Checks of Definition

Number density

$$\sum_{h_1h_2} \int dz_1 dz_2 D_1^{h_1h_2/q}(z_1, z_2) = N^q (N^q - 1)$$

Checks of Definition

Number density

$$\sum_{h_1h_2} \int dz_1 dz_2 D_1^{h_1h_2/q}(z_1, z_2) = N^q (N^q - 1)$$

Momentum sum rule
$$\sum_{h_1} \int_0^{1-z_2} dz_1 \int d^2 \vec{P}_{1\perp} z_1 D_1^{h_1 h_2 / q}(z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = (1 - z_2) D_1^{h_2 / q}(z_2, \vec{P}_{2\perp})$$

D. de Florian and L. Vanni, Phys. Lett. B 578, 139 (2004)

Checks of Definition

Number density

$$\sum_{h_1h_2} \int dz_1 dz_2 D_1^{h_1h_2/q}(z_1, z_2) = N^q (N^q - 1)$$

Momentum sum rule
$$\sum_{h_1} \int_0^{1-z_2} dz_1 \int d^2 \vec{P}_{1\perp} z_1 D_1^{h_1 h_2 / q}(z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = (1 - z_2) D_1^{h_2 / q}(z_2, \vec{P}_{2\perp})$$

D. de Florian and L. Vanni, Phys. Lett. B 578, 139 (2004)

LO cross section for

$$e^-e^+ \rightarrow (h_1h_2)X$$

$$\frac{d\sigma}{dz_1 dz_2} = \sum_{q\bar{q}} \hat{\sigma}^q D_1^{h_1 h_2/q}(z_1, z_2)$$
$$\frac{d\sigma}{dz dM_h} = \sum_{q\bar{q}} \hat{\sigma}^q D_1^{h_1 h_2/q}(z, M_h) \qquad \hat{\sigma}^q = \frac{4\pi e_q^2 \alpha_{em}^2 N_d}{3Q^2}$$

STAR Difficulties at Extreme Rapidity

STAR Difficulties at Extreme Rapidity

STAR Difficulties at Extreme Rapidity

/()

$$q_{N/A}^{(\text{on})}(x, Q^2) = \left[f^{N/A} \otimes q_N \right]$$
$$q_{N/A}^{(\text{off})}(x, Q^2) = \left[\tilde{f}^{N/A} \otimes \delta q_{N/A} \right]$$

$$q_{N/A}^{(\text{on})}(x, Q^2) = \begin{bmatrix} f^{N/A} \otimes q_N \end{bmatrix}$$
$$q_{N/A}^{(\text{off})}(x, Q^2) = \begin{bmatrix} \tilde{f}^{N/A} \otimes \delta q_{N/A} \end{bmatrix}$$
$$Contains Virtuality$$
$$\nu(p^2) = (p^2 - M^2)/M^2 \ll 1$$

$$q_{N/A}^{(\text{on})}(x,Q^2) = \left[f^{N/A} \otimes q_N\right]$$

$$q_{N/A}^{(\text{off})}(x,Q^2) = \left[\tilde{f}^{N/A} \otimes \delta q_{N/A}\right]$$

$$\Delta_3^q \equiv \frac{q_{p/3\text{H}} - q_{p/3\text{He}}}{q_{p/3\text{H}} + q_{p/3\text{He}}}$$
Contains Virtuality
$$\nu(p^2) = (p^2 - M^2)/M^2 \ll 1$$

$$q_{N/A}^{(\text{on})}(x,Q^2) = [f^{N/A} \otimes q_N]$$

$$q_{N/A}^{(\text{off})}(x,Q^2) = [\tilde{f}^{N/A} \otimes \delta q_{N/A}]$$

$$\Delta_3^q \equiv \frac{q_{p/3\text{H}} - q_{p/3\text{He}}}{q_{p/3\text{H}} + q_{p/3\text{He}}}$$
Contains Virtuality
$$\nu(p^2) = (p^2 - M^2)/M^2 \ll 1$$
Measures strength of isovector effect

Di-Hadron Production and Transversity Parton Distribution Functions

Kinematics and Definitions for DiFFs

$$q(k) \to h_1(P_1) + h_2(P_2) + X$$
 $z_{1,2} = P_{1,2}^-/k$

$$M_h^2 \equiv P_h^2 \equiv (P_1 + P_2)^2 \qquad R \equiv \frac{1}{2}(P_1 - P_2) \qquad z \equiv z_1 + z_2 \qquad \zeta = \frac{z_1 - z_2}{z}$$
Kinematics and Definitions for DiFFs

$$q(k) \to h_1(P_1) + h_2(P_2) + X$$
 $z_{1,2} = P_{1,2}^-/k$

$$M_h^2 \equiv P_h^2 \equiv (P_1 + P_2)^2 \qquad R \equiv \frac{1}{2}(P_1 - P_2) \qquad z \equiv z_1 + z_2 \qquad \zeta = \frac{z_1 - z_2}{z}$$

$$D_{1}^{h_{1}h_{2}/q}(z_{1}, z_{2}, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \equiv \frac{1}{64\pi^{3}z_{1}z_{2}} \int \frac{d\xi^{+}d^{2}\vec{\xi}_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \operatorname{Tr}\left[\langle 0 | \psi_{q}(\xi) | h_{1}, h_{2}, X \rangle \langle h_{1}, h_{2}, X | \bar{\psi}_{q}(0) | 0 \rangle \gamma^{-}\right]_{\xi^{-}=0}$$

Kinematics and Definitions for DiFFs

$$q(k) \to h_1(P_1) + h_2(P_2) + X$$
 $z_{1,2} = P_{1,2}^-/k$

$$M_h^2 \equiv P_h^2 \equiv (P_1 + P_2)^2 \qquad R \equiv \frac{1}{2}(P_1 - P_2) \qquad z \equiv z_1 + z_2 \qquad \zeta = \frac{z_1 - z_2}{z}$$

$$D_{1}^{h_{1}h_{2}/q}(z_{1}, z_{2}, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \equiv \underbrace{\frac{1}{64\pi^{3}z_{1}z_{2}}}_{64\pi^{3}z_{1}z_{2}} \underbrace{\frac{d\xi^{+}d^{2}\vec{\xi}_{T}}{(2\pi)^{3}}}_{(2\pi)^{3}} e^{ik\cdot\xi} \operatorname{Tr}\left[\langle 0 | \psi_{q}(\xi) | h_{1}, h_{2}, X \rangle \langle h_{1}, h_{2}, X | \bar{\psi}_{q}(0) | 0 \rangle \gamma^{-}\right]_{\xi^{-}=0}$$

72

Needed for number density interpretation

Kinematics and Definitions for DiFFs

$$q(k) \to h_1(P_1) + h_2(P_2) + X$$
 $z_{1,2} = P_{1,2}^-/k$

$$M_h^2 \equiv P_h^2 \equiv (P_1 + P_2)^2 \qquad R \equiv \frac{1}{2}(P_1 - P_2) \qquad z \equiv z_1 + z_2 \qquad \zeta = \frac{z_1 - z_2}{z_1 - z_2}$$

$$D_{1}^{h_{1}h_{2}/q}(z_{1}, z_{2}, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \equiv \underbrace{\frac{1}{64\pi^{3}z_{1}z_{2}}}_{64\pi^{3}z_{1}z_{2}} \underbrace{\frac{d\xi^{+}d^{2}\vec{\xi}_{T}}{(2\pi)^{3}}}_{(2\pi)^{3}} e^{ik\cdot\xi} \operatorname{Tr}\left[\langle 0 | \psi_{q}(\xi) | h_{1}, h_{2}, X \rangle \langle h_{1}, h_{2}, X | \bar{\psi}_{q}(0) | 0 \rangle \gamma^{-}\right]_{\xi^{-}=0}$$

Needed for number density interpretation Extended DiFFs (extDiFFs) are written in terms of $(z, \xi, \overrightarrow{R}_T^2)$ /2

Evolution

Evolution for extDiFFs (quark non-singlet)

$$\frac{\partial}{\partial \ln \mu^2} D_1^{h_1 h_2 / q}(z, \zeta, \overrightarrow{R}_T^2; \mu) = \int_z^1 \frac{\mathrm{d}w}{w} D_1^{h_1 h_2 / q}(\frac{z}{w}, \zeta, \overrightarrow{R}_T^2; \mu) P_{q \to q}(w)$$

Homogeneous term only for extended DiFFs

F. A. Ceccopieri, M. Radici, and A. Bacchetta, Phys. Lett. B 650, 81 (2007)

Inhomogeneous term exists for $D_1^{h_1h_2}(z_1, z_2)$

Evolution

Evolution for extDiFFs (quark non-singlet)

$$\frac{\partial}{\partial \ln \mu^2} D_1^{h_1 h_2/q}(z, \zeta, \overrightarrow{R}_T^2; \mu) = \int_z^1 \frac{\mathrm{d}w}{w} D_1^{h_1 h_2/q}(\frac{z}{w}, \zeta, \overrightarrow{R}_T^2; \mu) P_{q \to q}(w)$$

73

Homogeneous term only for extended DiFFs

F. A. Ceccopieri, M. Radici, and A. Bacchetta, Phys. Lett. B 650, 81 (2007)

Inhomogeneous term exists for $D_1^{h_1h_2}(z_1, z_2)$

Analogous derivations done for $D_1^{h_1h_2/g}$ and $H_1^{\triangleleft,h_1h_2/q}$

74

Observables for DiFFs

R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}M_h} = \frac{4\pi\alpha_{\mathrm{em}}^2}{s} \sum_q e_q^2 D_1^q(z, M_h)$$

Observables for DiFFs

SIA Artru-Collins Asymmetry

74

A. Vossen et al., Phys. Rev. Lett. 107, 072004 (2011)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}M_{h}} = \frac{4\pi\alpha_{\mathrm{em}}^{2}}{s}\sum_{q}e_{q}^{2}D_{1}^{q}(z,M_{h}) \qquad A^{e^{+}e^{-}}(z,M_{h},\bar{z},\overline{M}_{h}) = \frac{\sin^{2}\theta\sum_{q}e_{q}^{2}H_{1}^{\triangleleft,q}(z,M_{h})H_{1}^{\triangleleft,\bar{q}}(\bar{z},\overline{M}_{h})}{(1+\cos^{2}\theta)\sum_{q}e_{q}^{2}D_{1}^{q}(z,M_{h})D_{1}^{\bar{q}}(\bar{z},\overline{M}_{h})}$$

Observables for Transversity PDFs

SIDIS asymmetry (*p* and *D*)

$$A_{UT}^{\text{SIDIS}} = c(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{4,q}(z, M_{h})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z, M_{h})}$$

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

Observables for Transversity PDFs

SIDIS asymmetry (*p* and *D*)

$$A_{UT}^{\text{SIDIS}} = c(y) \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\triangleleft,q}(z, M_h)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z, M_h)}$$

75

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

 $A_{UT}^{pp} = \frac{\mathscr{H}(M_h, P_{hT}, \eta)}{\mathscr{D}(M_h, P_{hT}, \eta)}$

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

$$\mathscr{H}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) \frac{h_{1}^{b}(x_{b})}{\mathrm{d}\hat{t}} \frac{\mathrm{d}\Delta\hat{\sigma}_{ab^{\uparrow}\to c^{\uparrow}d}}{\mathrm{d}\hat{t}} H_{1}^{\triangleleft,c}(z, M_{h})$$
$$\mathscr{D}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) f_{1}^{b}(x_{b}) \frac{\mathrm{d}\hat{\sigma}_{ab\to cd}}{\mathrm{d}\hat{t}} D_{1}^{c}(z, M_{h})$$

Quality of Fit (Unpolarized Cross Section)

76

R. Seidl et al., Phys. Rev. D 96, 032005 (2017)

Quality of Fit (Artru-Collins Asymmetry)

//

Data for DiFFs

SIA cross section	Belle	1094	points
SIA Artru-Collins	Belle	183	points

Data for DiFFs

SIA cross section	Belle	1094 points	
SIA Artru-Collins	Belle	183 points	

$$\pi^+\pi^-$$
 DiFFs

$$D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$$
$$D_1^s = D_1^{\bar{s}}, \quad D_1^c = D_1^{\bar{c}}, \quad D_1^b = D_1^{\bar{b}},$$
$$5 \text{ independent functions } (w/D_1^g)$$
$$[supplement with PYTHIA data]$$

Data for DiFFs

SIA cross section	Belle	1094 points
SIA Artru-Collins	Belle	183 points

$$\pi^+\pi^-$$
 DiFFs

$$D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$$
$$D_1^s = D_1^{\bar{s}}, \quad D_1^c = D_1^{\bar{c}}, \quad D_1^b = D_1^{\bar{b}},$$
$$5 \text{ independent functions } (w/D_1^g)$$
$$[supplement with PYTHIA data]$$

$$\begin{split} H_{1}^{\triangleleft,u} &= -H_{1}^{\triangleleft,d} = -H_{1}^{\triangleleft,\bar{u}} = H_{1}^{\triangleleft,\bar{d}}, \\ H_{1}^{\triangleleft,s} &= -H_{1}^{\triangleleft,\bar{s}} = H_{1}^{\triangleleft,c} = -H_{1}^{\triangleleft,\bar{c}} = 0, \\ & 1 \text{ independent function} \end{split}$$

A. Courtoy et al., Phys. Rev. D 85, 114023 (2012)

Extracted DiFFs

Bound:

A. Bacchetta and M. Radici, Phys. Rev. D **67**, 094002 (2003)

 $< D_1^q$

 $|H_{\scriptscriptstyle 1}^{\triangleleft,q}|$

Extracted IFFs

Quality of Fit (SIDIS)

COMPASS, arXiv:hep-ph/2301.02013 (2023)

Quality of Fit (STAR $\sqrt{s} = 200$ GeV)

L. Adamczyk et al., Phys. Rev. Lett. 115, 24501 (2015)

Quality of Fit (STAR $\sqrt{s} = 500$ GeV)

L. Adamczyk et al., Phys. Rev. B 780, 332-339 (2018)

Quality of Fit

		$\chi^2_{ m red}$		
Experiment	$N_{ m dat}$	w/ LQCD	no LQCD	
Belle (cross section) [63]	1094	1.01	1.01	
Belle (Artru-Collins) [92]	183	0.74	0.73	
HERMES [72]	12	1.13	1.10	
COMPASS (p) [71]	26	1.24	0.75	
COMPASS (D) [71]	26	0.78	0.76	
STAR (2015) [94]	24	1.47	1.67	
STAR (2018) [64]	106	1.20	1.04	
ETMC δu [28]	1	0.71		
ETMC δd [28]	1	1.02		
PNDME δu [25]	1	8.68		
PNDME δd [25]	1	0.04		
Total χ^2_{red} (N _{dat})		1.01 (1475)	0.98 (1471)	

Experiment + Lattice + Theory

LATTICE (full moments) $\delta u \equiv \int_0^1 dx (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 dx (h_1^d - h_1^{\bar{d}}),$ $g_T \equiv \delta u - \delta d,$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Experiment + Lattice + Theory

Presently, trivial to find compatibility between any two

LATTICE
(full moments)
$$\delta u \equiv \int_0^1 dx (h_1^u - h_1^{\bar{u}}),$$
$$\delta d \equiv \int_0^1 dx (h_1^d - h_1^{\bar{d}}),$$
$$g_T \equiv \delta u - \delta d,$$

THEORY (unmeasured regions) $|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$ $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Experiment + Lattice + Theory

Presently, trivial to find compatibility between any two

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Experiment + Lattice + Theory

Presently, trivial to find compatibility between any two

LATTICE (full moments) $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$ $g_T \equiv \delta u - \delta d,$

Experiment + Lattice + Theory

Presently, trivial to find compatibility between any two $\begin{aligned} \text{LATTICE} \\ \textbf{(full moments)} \\ \delta u &\equiv \int_0^1 \mathrm{d} x (h_1^u - h_1^{\bar{u}}), \\ \delta d &\equiv \int_0^1 \mathrm{d} x (h_1^d - h_1^{\bar{d}}), \\ g_T &\equiv \delta u - \delta d, \end{aligned}$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Experiment + Lattice + Theory

Future of JAM Global QCD Analysis

Improve perturbative accuracy **Spin-Averaged + Helicity PDFs:** NLO → NNLO **Transversity PDFs:** LO → NLO

Future of JAM Global QCD Analysis

Improve perturbative accuracy **Spin-Averaged + Helicity PDFs:** NLO → NNLO **Transversity PDFs:** LO → NLO

86

High *x* analysis for polarized data (in progress!)

N. Sato *et al.*, Phys. Rev. D **93**, no. 7, 074005 (2016)

Future of JAM Global QCD Analysis

Improve perturbative accuracy **Spin-Averaged + Helicity PDFs:** NLO → NNLO **Transversity PDFs:** LO → NLO

High *x* analysis for polarized data (in progress!)

Simultaneous fit of DiFF channel + TMD channel + Lattice QCD