Study of superfast quarks using JLab data

March GHP, Anaheim 2025

Sebastian Moran Vasquez

On behalf of JLab E12-10-008

UCR, LBL (DE-AC02-04CH11231)

D D D D O

How well do we understand the nucleus?

Nuclei are complex, strongly-interacting, many-body systems

Typical velocities for nucleons in nuclei are up to ~30% speed of light

Nucleons →protons/neutrons

Made of 3 valence quarks bound by gluons, and the nebulous sea quarks

~10¹⁴ denser than ordinary matter

Partons = a

quarks and gluons

We need to define some variables:

Q² = squared four-momentum transfer

Bjorken x = fraction of the parent nucleon momentum carried by the parton

Note that x is defined as a fraction, so it can take values between 0 and 1 for isolated nucleons at rest.

We need to define some variables:

Q² = squared four-momentum transfer

Bjorken x = fraction of the parent nucleon momentum carried by the parton

Note that x is defined as a fraction, so it can take values between 0 and 1 for isolated nucleons at rest.

We need to define some variables:

Q² = squared four-momentum transfer

Bjorken x = fraction of the parent nucleon momentum carried by the parton

At high Q2 -> Incoherent 'billiard ball' scattering from a single quark

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) = ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) = ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) = ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) = ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Suppression of the high momentum quarks for 0.3<x<0.7 in nuclei relative to the deuterium

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) \neq ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Suppression of the high momentum quarks for 0.3<x<0.7 in nuclei relative to the deuterium

Interaction electron-free nucleon -> Well known

What about the nucleus?

What are the modifications of the structure of the nucleons in the nuclear medium?

Nuclear binding energy << Energy scale of the probe

Expectation (naive):

$$F_A^2(x,Q^2) \neq ZF_p^2(x,Q^2) + NF_n^2(x,Q^2)$$

Suppression of the high momentum quarks for 0.3<x<0.7 in nuclei relative to the deuterium

"Valence quarks in nucleus carry less momentum than in a nucleon"

Strength of the effect highly correlated with A and average nuclear density

Strength of the effect highly correlated with A and average nuclear density

Strength of the effect highly correlated with A and average nuclear density

Strength of the effect highly correlated with A and average nuclear density

⁹Be low average density but large 2α + n structure

Strength of the effect highly correlated with A and average nuclear density

⁹Be low average density but large 2α + n structure

EMC effect seems to follow LOCAL density rather than average density!

How can we study local density?

Short Range Correlations (SRC)

 $\vec{p}_{c.m.} = \vec{p}_1 + \vec{p}_2$

Pairs of nucleons with high back to back momenta

How can we study Local Density?

Short Range Correlations (SRC)

Pairs of nucleons with high back to back momenta

If the high momentum nucleons in nuclei come from correlated pairs, ratio of A/D should show a plateau.

19

Relation between EMC and SRC

Relation between EMC and SRC

Linear correlation between the size of the EMC effect and SRC plateau

21

How can we move forward?

So, study of SRC (x>1) shed some light on the EMC effect (0.3<x<0.7)

Inclusive DIS sensitive to:

At high x -> Isolate high momentum nucleons (SRCs) At high Q² -> Isolate scattering from quarks

Can we have access to partonic degrees of freedom at x>1? **YES!**

Now possible because we have access to higher energies (11 GeV electron beam instead of 6 GeV)

At higher Q² inclusive scattering is sensitive to distribution of high momentum quarks SuperFast Quarks (SFQ)

Topic of this talk

Superfast Quarks (SFQ)

Quarks carrying a momentum greater than that of a nucleon (x>1)

Why do we want to study them?

Because their distribution is connected to short distance structure of nuclei

Quark distributions of nuclei at large x are poorly understood

Promising region to examine for the importance of the underlying quark degrees of freedom in nuclear structure

and

SFQ is a new way of testing models of the EMC effect! ($1.0 \le x \le 1.5$)

Kinematic requirements to detect SFQ

Q² large enough so the DIS tail overwhelm the QE contribution

Kinematics at 11 GeV

Many Theoretical Models

Convolution Model, Six-Quark Model, Hard-Gluon-Exchange Model and many many more

One example: 6-quark model:

Two nucleon system collapse into 6q state

The really important feature is that we are allowing gluon exchange between the particles

So, quarks degrees of freedom in DIS at x>1

— 95% p+n plus 5% 6q bag

- 6-quark model bag (x0.05)
- n + p PDF with convolution for smearing

We would need extremely high exotic contributions to explain 10-20% suppression

So, quarks degrees of freedom in DIS at x>1

Approximate Scaling is observed

Hall C XEM2 Experiment: E12-06-105

Energy transfer as small as possible while increasing Q² as high as possible

18

For SFQ region we mainly use HMS

Data Analysis, Current Status

Detector Calibration

- Drift Chamber Calibration
- Hodoscopes Calibration
- Threshold Cherenkov Counters Calibration
- Shower Calorimeter Calibration

Corrections applied to Final Yield

- Dummy Subtraction
- Tracking Efficiency
- Calorimeter Efficiency
- Cerenkov Efficiency
- Charge Symmetry Background Correction
- Delta dependence Acceptance Correction
- BCM4A Correction
- Coulomb Corrections
- Radiative Corrections
- Ytar correction
- Delta Offset Correction
- Boiling Correction
- MC Jacobian Correction
- Cryogenic Contraction Correction
- Isoscalar Corrections

All of them applied to the cross sections already

Next Steps:

- Include systematic uncertainties
- Quantify scaling
- Compare with different models for deuterium

Some of the XEM2 members

Thank you!

Relation between EMC and SRC

Linear correlation between the size of the EMC effect and SRC plateau

33

Comparison with JLab 6GeV era

Carbon

What does the distribution of SFQ look like?

Exponential fall off

Both CERN and Fermilab fit an exponential to F₂ and extract the 'slope' of the fall off

Problems:

Fermilab has poor resolution in x CERN has low statistics (upper limit only goes up to x=1.05)

JLab results closer to CERN , but there are many problems still, we need higher Q² to have a cleaner sample

Nachtman scaling variable xi

Electron-Nucleus Scattering

