
AI in Streaming Data Processing at the EIC

Markus Diefenthaler (Jefferson Lab)



ePIC in a Nutshell

Overview

• ePIC is a highly integrated, multi-purpose experiment. 

• The ePIC Experiment is being developed by the ePIC 
Collaboration in partnership with the EIC Project. 

• The ePIC Collaboration was established in 2022 and is 
international in scope, comprising over 900 
collaborators from 178 institutions across 25 countries 
and 5 world regions. 
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In my presentation, I will focus on ePIC, the primary experiment at the EIC. I will provide an overview of 
the compute-integration of the ePIC experiment and highlight streaming readout and AI applications at 
ePIC, showcasing their potential to redefine experimental capabilities and precision. 



The Highly-Integrated ePIC Experiment  

Integrated Interaction and Detector Region (90 m)
Get close to full acceptance for all final state particles, and 
measure them with good resolution. All particles count!

Compute-Detector Integration
Seamless data processing from detector readout to analysis 
using streaming readout and streaming computing. 

Definition of Streaming Readout
• Data is digitized at a fixed rate with thresholds and zero 

suppression applied locally. 
• Data is read out in continuous parallel streams that are 

encoded with information about when and where the 
data was taken. 

• Event building, filtering, monitoring, and other data  
processing is deferred to streaming computing. 

Advantages  of Streaming Readout
• Simplification of readout (no trigger hardware, 

firmware, decisions) and increased flexibility.  
• Event building from holistic detector information. 
• Continuous data flow provides detailed knowledge of 

backgrounds and enhances control over systematics. 
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Compute-Detector Integration to Maximize Science
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EIC RHIC LHC → HL-LHC

Collision species റ𝑒 + റ𝑝, റ𝑒 + 𝐴 റ𝑝 + റ𝑝/𝐴, 𝐴 + 𝐴 𝑝 + 𝑝/𝐴, 𝐴 + 𝐴

Top x-N C.M. energy 140 GeV 510 GeV 13 TeV

Peak x-N luminosity 1034 cm-2 s-1 1032 cm-2 s-1 1034 → 1035 cm-2 s-1

x-N cross section 50 μb 40 mb 80 mb

Top collision rate 500 kHz 10 MHz 1-6 GHz

dNch/dη 0.1-Few ~3 ~6

Charged particle rate 4M Nch/s 60M Nch/s 30G+ Nch/s 

Streaming Readout Capability Due to Moderate Signal Rate: 
• Capture every collision signal, including background.
• Event selection using all available detector data for holistic reconstruction: 

• Eliminate trigger bias and provide accurate estimation of uncertainties during event selection. 
• Streaming background estimates ideal to reduce background and related systematic uncertainties. 

Broad ePIC Science Program:
• Plethora of observables, with less distinct topologies where every event is significant.
• High-precision measurements: Control of systematic uncertainties of paramount importance. 



Compute-Detector Integration to Accelerate Science

• Problem Data for physics analyses and the resulting publications available after O(1year) due to complexity of NP 
experiments (and their organization). 

• Alignment and calibration of detector as well as reconstruction and validation of events time-consuming. 

• Goal Rapid turnaround of 2-3 weeks for data for physics analyses. 

• Timeline driven by alignment and calibrations. 

• Discussed alignment and calibration procedures and requirements with detector experts. Preliminary 
information from Detector Subsystem Collaborations indicates that 2-3 weeks are realistic. 

• Solution Compute-detector integration using: 
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AI for autonomous 
alignment and 

calibration as well as 
autonomous validation 

for rapid processing. 

Streaming readout for 
continuous data flow of 

the full detector 
information. 

Heterogeneous 
computing for 
acceleration (CPU, 
GPU).  



Prototype of Event Reconstruction from Streaming Data
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Streaming DAQ
Streaming 

Computing (JANA2)
Reconstructed 

Events
Timeframes

0.6ms of data

• Data transferred in collections called timeframes 
(or timeframes aggregated into super-timeframes). 

• Each timeframe includes:
• Data read from detectors over a time 

window of 216 cycles of the beam RF, 
equivalent to 0.6 ms. 

• Channel information and corresponding 
timing data Major JANA2 update for processing of 

timeframes, events, and subevents.  

Scope of the first prototype: Track reconstruction only. Demonstrated that we can correlate hits in a realistic time 

frame to the various events in the time window of the MAPS of 2μs.

Continuous stream of data 



global processing and storage
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The ePIC Streaming Computing Model
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Supporting the analysis community where they are at their home 
institutes, primarily via services hosted at Echelon 1 and 2. 

Two host labs, two primary 
computing facilities. 

Streaming DAQ

Global contributions 
leveraging commitments to 
ePIC computing from labs 
and universities, domestically 
and internationally.



Computing Resource Needs and Their Implications
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O(1M) core-years to process a year of data: 
• Optimistic scaling of constant-dollar performance gains 

would reduce the numbers about 5x: 
• Based on current LHC measure of 15% per year. 
• But the trend is towards lower gains per year. 

• Whatever the gains over time, processing scale is 
substantial! 

• Motivates attention to leveraging distributed and 
opportunistic resources from the beginning. 

~350 PB to store data of one year. 

Computing resource needs comparable to LHC experiments 
ATLAS and CMS at their scales today. 

ePIC is compute intensive experiment; must ensure ePIC
is not compute-limited in its science. 

GHP 2025, March 15, 2025.  

For EIC Phase I



The Role of AI

• Compute-detector integration using: 

• AI will empower the data processing at the EIC. 

• Rapid turnaround of data relies on autonomous alignment and calibration as all as autonomous validation. 

• AI will also empower autonomous experimentation and control beyond data processing: 

• Vision for a responsive, cognizant detector system, .e.g., adjusting thresholds according to background rates. 

• Enabled by access to full detector information via streaming readout. 
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AI for autonomous 
alignment and 

calibration as well as 
reconstruction and 
validation for rapid 

processing. 

Streaming readout for 
continuous data flow of 

the full detector 
information. 

Heterogeneous 
computing for 
acceleration.  



Example: Streaming Computing Developments at Jefferson Lab
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Physics and Detector Simulation *

ERSAP
for streaming 
orchestration

Upcoming HPDF at Jefferson Lab

Alignment *

Calibration *

Reconstruction * 

Physics Analysis * 
• 3D Imaging (Multidimensional)
• Spectroscopy (Multichannel)
• Bose-Einstein Condensate 

EJFAT

Heterogeneous Computing Facility
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Physics Analysis *
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Integrated 
Research 

Infrastruct
ure Across 
Facilities
(JIRIAF)

Experiment *

Digital Twin *

Streamed Data

Feedback for Self-
Driving Experiment 

Streamed Data

Feedback for Self-
Driving Experiment 

Feedback for Self-
Driving Experiment 

* AI/ML

real-time load 
balancer



Example: Change Detection

• Multiscale method for detection of sudden changes and gradual changes

• Various test functions for various changes

• Fast algorithm for signal analysis

• Represent data in multiscale basis: 

• Application: 

• Analyze results from multiscale method (in red). 

• Decide on response:  

• Issue alarm, 

• Restart calibration,  

• Start user-defined process.  
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and bluepoints to denote thechanged and unchanged data, respectively. Wecan observe

that our algorithm views the peaks in the data as changes. Our algorithm separates the

peaks and background in the data. The ADC data denoted as red points and blue points

arepeaks and background, respectively. Thedetection results of scale 9 and 10 issimilar.

Figure11: Peaksdetection for GEM datawhen using piecewiseconstant basis. Theoutlier

parameter C= 6.

6.2 Sudden change detection

6.2.1 Sudden change detection for GEM data

We rst add sudden changes in the middle of the data, see Figure 12. Then we use our

algorithm to locate when the change happens in the data set.

Figure 13 show the results of online change detection for sudden change with scales

12 and 13. Weadd two sudden changes in dataarti cially. Weusethepiecewiseconstant

test function (4). There are 4 sub- gures in each scale, which are the same with Figure

11. It isclear that thecoe cientssatisfy properties(P1) and (P2). Wecan observethat the

multiscale representation magni esthechangesand shrinksthenoisein theraw dataset,

which makes thesudden changes in the raw data set areeasy to detect in thecoe cients

sets. The sudden change are detected in both 12 and 13 scale. In scale 12, we not only

detect sudden change, but also peaks in raw data set. However, the algorithm can not

distinguish thesudden changesand peaks. In scale13, only sudden changes aredetected.

Hence, if we increase the scale, the algorithm ignore the noise and only detect sudden

changes in the data set, which makes the detection results are more reliable.
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Transform to coefficient space: 

• Outliers in the distribution → Change. 

• Change detection: Detect outliers 

• e.g., using IQR 

Reference Z. Chen, C.A. Micchelli, C., Y. 
Xu, Multiscale Methods for Fredholm 
Integral Equations, Cambridge 
Monographs on Applied and 
Computational Mathematics (2015)

Soon to be published, featuring examples from TIDIS.



Example: Streaming Analysis
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Example from QuantOm (SciDAC Project).

Example workflow for 3D imaging of quarks and gluons, 
extracting quantum correlation functions (QCFs) using events streamed from the detector.

AI used for 
modeling of 
experimental 
effects. 



Summary: AI in Streaming Data Processing at the EIC

ePIC Experiment: A highly integrated, multi-purpose experiment at the EIC, leveraging advanced compute-detector 
integration to enhance precision measurements: 

• Streaming Readout to Maximize Science: Continuous detector data acquisition without hardware triggers, enabling 
holistic event selection, improved background control, and precise uncertainty estimation during event selection.

• AI-Powered Processing to Accelerate Science: Autonomous alignment, calibration, and validation for rapid data 
turnaround, accelerating scientific discoveries.

• Distributed Computing: Globally distributed resources to manage compute resource needs efficiently.

AI Examples: 

• Change Detection: Multiscale analysis for identifying sudden and gradual changes in detector data, enabling 
responsive system adjustments.

• Streaming Analysis: Extracting QCFs in the QuantOm workflow using events streamed from the detector. AI-powered 
modeling of experimental effects for the folding approach in QuantOm. 
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Streaming + AI + Distributed Computing = Data Processing at the EIC

Community efforts on AI and data applications for streaming and 
distributed computing are essential for the data processing at the EIC.
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