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Overview

In my presentation, | will focus on ePIC, the primary experiment at the EIC. | will provide an overview of
the compute-integration of the ePIC experiment and highlight streaming readout and Al applications at
ePIC, showcasing their potential to redefine experimental capabilities and precision.

ePIC in a Nutshell

e ePICis a highly integrated, multi-purpose experiment.

* The ePIC Experiment is being developed by the ePIC
Collaboration in partnership with the EIC Project.

/

* The ePIC Collaboration was established in 2022 and is
international in scope, comprising over 900
collaborators from 178 institutions across 25 countries

and 5 world regions.
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The Highly-Integrated ePIC Experiment

Integrated Interaction and Detector Region (90 m) Compute-Detector Integration
Get close to full acceptance for all final state particles, and Seamless data processing from detector readout to analysis
measure them with good resolution. All particles count! using streaming readout and streaming computing.

Definition of Streaming Readout

e Data is digitized at a fixed rate with thresholds and zero
suppression applied locally.

e Datais read out in continuous parallel streams that are
encoded with information about when and where the
data was taken.

* Event building, filtering, monitoring, and other data
processing is deferred to streaming computing.

Advantages of Streaming Readout

e Simplification of readout (no trigger hardware,
firmware, decisions) and increased flexibility.

e Event building from holistic detector information.

e Continuous data flow provides detailed knowledge of
backgrounds and enhances control over systematics.

B
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Compute-Detector Integration to Maximize Science

Broad ePIC Science Program:
* Plethora of observables, with less distinct topologies where every event is significant.
* High-precision measurements: Control of systematic uncertainties of paramount importance.

Streaming Readout Capability Due to Moderate Signal Rate:
e Capture every collision signal, including background.
* Event selection using all available detector data for holistic reconstruction:
* Eliminate trigger bias and provide accurate estimation of uncertainties during event selection.
* Streaming background estimates ideal to reduce background and related systematic uncertainties.

| EC_ | RHC LHC > HLLHC

Collision species e+pe+A p+p/A, A+ A p+p/A, A+ A
Top x-N C.M. energy 140 GeV 510 GeV 13 TeV

Peak x-N luminosity 103 cm2 st 1032 cm2 sl 1034 > 10 cm2s1?
X-N cross section 50 pb 40 mb 80 mb

Top collision rate 500 kHz 10 MHz 1-6 GHz

dN./dn 0.1-Few ~3 ~6

Charged particle rate 4M N, /s 60M N /s 30G+ N /s
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Compute-Detector Integration to Accelerate Science

* Problem Data for physics analyses and the resulting publications available after O(1year) due to complexity of NP
experiments (and their organization).
e Alignment and calibration of detector as well as reconstruction and validation of events time-consuming.

* Goal Rapid turnaround of 2-3 weeks for data for physics analyses.
* Timeline driven by alignment and calibrations.

e Discussed alignment and calibration procedures and requirements with detector experts. Preliminary
information from Detector Subsystem Collaborations indicates that 2-3 weeks are realistic.

* Solution Compute-detector integration using:

) Al for autonomous
Streaming readout for Heterogeneous

: alignment and :
continuous data flow of & computing for

calibration as well as .
the full detector . acceleration (CPU,
: : autonomous validation
information. GPU).

for rapid processing.

fferson Lab
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Prototype of Event Reconstruction from Streaming Data

Scope of the first prototype: Track reconstruction only. Demonstrated that we can correlate hits in a realistic time

frame to the various events in the time window of the MAPS of 2us.

. Streamin
St reaming DAQ Timeframes : g RecoEnstructed
Computing (JANA2) vents
Continuous stream of data 0.6ms of data
Reads a file containing Calculates intermediate
. . el results for the Timeslices
» Data transferred in collections called timeframes e = - :
Calculates intermediate
(or timeframes aggregated into super-timeframes). results for the

PhysicsEvents

* Each timeframe includes: g Source

* Data read from detectors over a time
window of 26 cycles of the beam RF,
equivalent to 0.6 ms.

* Channel information and corresponding
timing data

Timeslice
level

PhysicsEvent

e Major JANA2 update for processing of
timeframes, events, and subevents.
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The ePIC Streaming Computing Model

7 -~
, N N
[ Echelon 1 (host labs) i
1 . i
Home Institution '[' Two hos_t Iabs,.t-V\{o SR AN Jefferson Lab : Home Institution
1 computing facilities. |
|

Home Institution Home Institution

Global contributions

leveraging commitments to
ePIC computing from labs
and universities, domestically I

1
L

Home Institution Home Institution

and internationally. '

Home Institution l Home Institution

global processing and storage

Echelon 3 Echelon 3

Supporting the analysis community where they are at their home
institutes, primarily via services hosted at Echelon 1 and 2.
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Computing Resource Needs and Their Implications

Processing by Use Case [cores] Echelon 1 m

Streaming Data Storage and Monitoring

Alignment and Calibration 6,004
Prompt Reconstruction 60,037
First Full Reconstruction 72,045
Reprocessing 144,089
Simulation 123,326
Total estimate processing 405,501

Storage Estimates by Use Case [PB] Echelon 1 m

Streaming Data Storage and Monitoring 71
Alignment and Calibration 1.8
Prompt Reconstruction 4.4
First Full Reconstruction 8.9
Reprocessing 9

Simulation 107
Total estimate storage 201
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O(1M) core-years to process a year of data:
- Optimistic scaling of constant-dollar performance gains
would reduce the numbers about 5x:
- Based on current LHC measure of 15% per year.
- But the trend is towards lower gains per year.
- Whatever the gains over time, processing scale is
substantiall
- Motivates attention to leveraging distributed and
opportunistic resources from the beginning.

~350 PB to store data of one year.

Computing resource needs comparable to LHC experiments
ATLAS and CMS at their scales today.

ePIC is compute intensive experiment; must ensure ePIC
is not compute-limited in its science.
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The Role of Al

* Compute-detector integration using:

Al for autonomous
Streaming readout for alignment and
continuous data flow of calibration as well as
the full detector reconstruction and
information. validation for rapid
processing.

Heterogeneous
computing for
acceleration.

e Al will empower the data processing at the EIC.
* Rapid turnaround of data relies on autonomous alignment and calibration as all as autonomous validation.

* Al will also empower autonomous experimentation and control beyond data processing:
* Vision for a responsive, cognizant detector system, .e.g., adjusting thresholds according to background rates.
* Enabled by access to full detector information via streaming readout.
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Example: Streaming Computing Developments at Jefferson Lab

Streamed Data

Physics and Detector Simulation *

Feedback for Self-
Driving Experiment

Streamed Data

R

Feedback for Self-
Driving Experiment

S

Feedback for Self-
Driving Experiment

Digital Twin *

* Al/ML
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ERSAP
for streaming
orchestration

real-time load
balancer

Integrated
Research
Infrastruct
ure Across
Facilities
(JIRIAF)

— -
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Heterogeneous Computing Facility

Physics Analysis *

* 3D Imaging (Multidimensional)
* Spectroscopy (Multichannel)

* Bose-Einstein Condensate

Upcoming HPDF at Jefferson Lab

Physics Analysis *

* 3D Imaging (Multidimensional)
* Spectroscopy (Multichannel)

* Bose-Einstein Condensate
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Exam p|e- Chan ge Detection Soon to be published, featuring examples from TIDIS.

* Multiscale method for detection of sudden changes and gradual changes
e Various test functions for various changes
* Fast algorithm for signal analysis
* Represent data in multiscale basis:
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* Change detection: Detect outliers
* e.g., using IQR

* Application:
* Analyze results from multiscale method (in red).
* Decide on response:
* |ssue alarm,
* Restart calibration,
» Start user-defined process.
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* Qutliers in the distribution - Change.

Reference Z. Chen, C.A. Micchelli, C., Y.
Xu, Multiscale Methods for Fredholm
Integral Equations, Cambridge
Monographs on Applied and
Computational Mathematics (2015)
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Exam ple: Streamin g Analys IS Example from QuantOm (SciDAC Project).

Example workflow for 3D imaging of quarks and gluons,
extracting quantum correlation functions (QCFs) using events streamed from the detector.

Module 1

Event-level QCF inference framework

f — Module 4

EIC 5§ tre
Parameter ! S : :
! Generator :
C% .j,e/ff.erson Lab ‘ e
| Module 2 ' Compare experiment and theory at the |
| ey S ey detectorlevel. e | Al used for
i ; f"M?MC\ i E______,_,_,__'_'____'_T_':,'_T_'_'__'_'_T_'_T,__T_': J '_--_--_-------------_-----"--'_--_--_-------_--'i modeling of
o L p : Enabled by folding that means idealized | .
. N N : N 5 experimental
Trial QCF » » »i Detector > : theory events are folding .Wlth detector : ffp
P o : effects to resemble experimental events. | efrects.

Optimize QCF parameters
Advantages of Folding Approach

Joint theoretical-Experimental Workflow: Match theoretical assumptions and experimental cuts in an
unprecedented manner, reducing mismatches between experiment and theory.

Robust approach: Variants in theory can be rigorously studied, and additional experimental data can be
incorporated seamlessly.
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Summary: Al in Streaming Data Processing at the EIC

ePIC Experiment: A highly integrated, multi-purpose experiment at the EIC, leveraging advanced compute-detector
integration to enhance precision measurements:

* Streaming Readout to Maximize Science: Continuous detector data acquisition without hardware triggers, enabling
holistic event selection, improved background control, and precise uncertainty estimation during event selection.

* Al-Powered Processing to Accelerate Science: Autonomous alignment, calibration, and validation for rapid data
turnaround, accelerating scientific discoveries.

e Distributed Computing: Globally distributed resources to manage compute resource needs efficiently.

Streaming + Al + Distributed Computing = Data Processing at the EIC

Al Examples:

* Change Detection: Multiscale analysis for identifying sudden and gradual changes in detector data, enabling
responsive system adjustments.

e Streaming Analysis: Extracting QCFs in the QuantOm workflow using events streamed from the detector. Al-powered
modeling of experimental effects for the folding approach in QuantOm.

Community efforts on Al and data applications for streaming and
distributed computing are essential for the data processing at the EIC.
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