

Preliminary Results of the SBS-GMn Experiment with Super BigBite Spectrometer at Jefferson Lab's Hall A

Provakar Datta (for the SBS collaboration)

Representing the SBS-GMn and -nTPE Graduate Students: Vanessa Brio (Catania U.), John Boyd (UVA), Provakar Datta (UConn), Nathaniel Lashley-Colthirst (Hampton U.), Ralph Marinaro (University of Glasgow), Anuruddha Rathnayake (UVA), Maria Satnik (W&M), Sebastian Seeds (UConn), Ezekiel Wertz (W&M)

GHP 2025 | 03/14/2025

Outline

Nucleon Form Factors and the Structure of the Nucleon

SBS Program at Jefferson Lab and SBS-GMn Experiment: Brief Overview

Physics Analysis Methodology, Challenges, and Preliminary Results

Summary and outlook

Elastic *eN* Scattering and Nucleon Form Factors

Differential Cross Section in OPE Approx. (Rosenbluth Formula):

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{\text{Mott}}\epsilon_N}{1+\tau_N} \left(\epsilon_N G_E^{N^2}(Q^2) + \tau_N G_M^{N^2}(Q^2)\right)$$

•
$$N \Rightarrow$$
 Proton (p), Neutron (n)
• $Q^2 = -q^2$
• $\tau_N = Q^2/4M_N^2$
• $\epsilon_N = (1 + 2(1 + \tau_N)\tan^2(\theta_e/2))^{-1}$

$$\begin{aligned} G_E^N &\Rightarrow \text{Electric Form Factor} \\ G_M^N &\Rightarrow \text{Magnetic Form Factor} \end{aligned} \quad \text{At } Q^2 = 0, \begin{cases} G_E^p(0) = 1, & G_M^p(0) = \mu_p \\ G_E^n(0) = 0, & G_M^n(0) = \mu_n \end{cases} \end{aligned}$$

Figure: Elastic *eN* scattering in OPE Approximation

Electromagnetic Form Factors & Nucleon Imaging

- In non-relativistic limit G_E and G_M are related to the 3D Fourier transforms of the spatial charge and current distributions within the nucleon, respectively. But relativistic corrections are large and model dependent.
- However, in the infinite momentum frame * (IMF), a model-independent density interpretation can be drawn in terms of transverse distributions by relating the form factors to Generalized Parton Distribution (GPD) moments.

Ref: Carlson et al: Phys. Rev. Lett. 100, 032004 (2008)

Transverse charge density of

Longitudinally Polarized

Transverse charge density of

Longitudinally Polarized

Outline

Nucleon Form Factors and the Structure of the Nucleon

SBS Program at Jefferson Lab and SBS-GMn Experiment: Brief Overview

Physics Analysis Methodology, Challenges, and Preliminary Results

Summary and outlook

Super BigBite Spectrometer (SBS) Program – 2021-25

^[*] Plots from: F. Gross et al., "50 Years of Quantum Chromodynamics," Dec. 2022. arXiv: 2212.1107

- ✤ Goal: High-precision measurements of neutron and proton electromagnetic form factors in unprecedented Q² regime.
- ✤ Challenges:
 - Elastic eN scattering cross-section falls like $1/Q^{12}!!$
 - High precision tracking at very high rates.
 - Simultaneous detection of high energy nucleons with high and comparable efficiencies.

The Super BigBite Spectrometer – Design Highlights

SBS Dipole Magnet

 \circ 1.6 Tm field integral

BERKELEY LAB

- 50 msr solid angle acceptance at 15° (Achieved with a cut in the yoke for passage of the beam line)
- Separates high energy nucleons by charge

Hadron Calorimeter (HCAL)

- $\circ~~2\times3.7~m^2$ active area
- Detects both the nucleons with high & comparable efficiencies
- $\circ \approx 5 \text{ cm}$ position resolution
- $\circ \approx 1.2 \text{ ns time resolution}$

P. Datta | GHP 2025 | 03/14/2025

Gas Electron Multiplier (GEM) Tracker

- \circ 50 × 150 cm² active area
- $\circ ~\approx 70 \ \mu m$ position resolution
- \circ Capable of handling hundreds of kHz rates per cm².

BigBite and Super BigBite Spectrometers in Hall A

Electron Arm: The BigBite Spectrometer (Side View)

Nucleon Form Factors and the Structure of the Nucleon

SBS Program at Jefferson Lab and SBS-GMn Experiment: Brief Overview

> Physics Analysis Methodology, Challenges, and Preliminary Results

Summary and outlook

SBS-GMn Measurement Technique ("Ratio Method")

^[1] L. Durand, Phys. Rev. 115 1020 (1959).

- Simultaneous detection of electrons and nucleons lets us use "ratio method"^[1], which offers significant cancellation of some systematic errors.
- 3 major steps to get G_M^n :
 - Extracting QE cross section ratio, *R*^{QE}, directly from the experiment:

$$R^{QE} = \frac{\frac{d\sigma}{d\Omega}|_{D(e,e'n)}}{\frac{d\sigma}{d\Omega}|_{D(e,e'p)}}$$

Apply nuclear and radiative corrections to obtain:

$$R = \frac{\frac{d\sigma}{d\Omega}|_{n(e,e')}}{\frac{d\sigma}{d\Omega}|_{p(e,e')}} = \frac{\frac{\sigma_{\text{Mott}}\epsilon_n}{1+\tau_n} \left(\epsilon_n G_E^{n\ 2} + \tau_n G_M^{n\ 2}\right)}{\frac{\sigma_{\text{Mott}}\epsilon_p}{1+\tau_p} \sigma_{Red}^p}$$

3 Finally,

$$\boldsymbol{G_M^n} = -\left[\frac{1}{\tau_n} \frac{\epsilon_n (1+\tau_n)}{\epsilon_p (1+\tau_p)} \sigma_{Red}^p \boldsymbol{R} - \frac{\epsilon_n}{\tau_n} G_E^{n\,2}\right]^{\frac{1}{2}}$$

Kinematics of SBS-GMn

Table 1: Kinematics of SBS-GMn. Q^2 is the central Q^2 , E_{beam} is the beam energy, θ_{BB} is the BigBite central angle, θ_{SBS} is the Super BigBite central angle, ϵ is the longitudinal polarization of the virtual photon, $E_{e'}$ is the average scattered electron energy, and $E_{p'}$ is the average scattered proton energy.

Q ² (GeV/c) ²	ε	E _{beam} (GeV)	θ _{вв} (deg)	θ _{SBS} (deg)	E _e , (GeV)	E _p , (GeV)
3.0	0.72	3.73	36.0	31.9	2.12	2.4
4.5	0.51	4.03	49.0	22.5	1.63	3.2
4.5	0.80	5.98	26.5	29.9	3.58	3.2
7.4	0.46	5.97	46.5	17.3	2.00	4.8
9.9	0.50	7.91	40.0	16.1	2.66	6.1
13.5	0.41	9.86	42.0	13.3	2.67	8.1

- Data was collected at five different Q^2 points for G_M^n extraction.
- The high ϵ data at 4.5 GeV² is dedicated to the SBS-nTPE (E12-20-010) experiment, which aims to do first high precision Rosenbluth separation of the neutron form factors to shed some light on the two-photon exchange (TPE) contribution in the elastic *en* scattering.

Detector Performance Highlights

- BigBite Spectrometer:
 - Momentum resolution $\left(\frac{\sigma_p}{p}\right)$: 1 1.5%
 - Angular resolution (in-plane & out-of-plane): 1 2 mrad
 - Vertex resolution: 2 6 mm

- Super BigBite Spectrometer:
 - Hadron Calorimeter (HCAL):
 - \circ Time Resolution: 1.2 1.3 ns
 - \circ Position Resolution: 5 6 cm

Physics Analysis Methods – Introducing HCAL Δx **Variable**

• From the Δx plot we can extract D(e, e'n) & D(e, e'p) counts to form ratio of interest:

$$R^{QE} = \frac{\frac{d\sigma}{d\Omega}|_{D(e,e'n)}}{\frac{d\sigma}{d\Omega}|_{D(e,e'p)}}$$

 $x_{HCAL}^{meas} \Rightarrow$ Measured Proton/Neutron Position at HCAL $x_{HCAL}^{pred} \Rightarrow$ Predicted **Neutron** Position at HCAL

Quasi-Elastic (QE) Event Selection: $Q^2 = 3 (GeV/c)^2$

Squared invariant mass of the virtual photon-struck nucleon system:

$$W^2 = (P_N^i + q)^2$$

= M_N^2 (Elastic Scattering)

Quasi-Elastic (QE) Event Selection Across Q^2 Points

Signal Shapes from Monte Carlo (MC) Simulation

Steps to generate realistic signal shapes from MC:

Data/MC Fit to Δx Distribution: $Q^2 = 7.4 (GeV/c)^2$

Fit equation:

$$Data = N * (p_{signal}^{MC} + R_{n/p}^{sf} * n_{signal}^{MC}) + B * Inel_{bg}^{MC}$$

- Fit parameters:
 - 1. N Overall proton (p) normalization.
 - 2. $R_{n/p}^{sf}$ Relative neutron (n) to proton normalization.
 - 3. B Overall background normalization.
- ✤ Agreement of fit looks good in the entire range of interest.

GMn Extraction from Data/MC Fit : $Q^2 = 7.4 (GeV/c)^2$

Total Systematic Error Budget (Preliminary)

Table 2: Estimated contributions	(in percent) to systematic erro	$r \text{ on } R \text{ and } \frac{G_M^n}{\mu_n G_D}.$
		$\mu_n G_D$

Error Sources		$Q^2 (\epsilon)$						
			4.5~(0.51)	7.4(0.46)	9.9~(0.50)	13.5(0.41)		
	Inelastic Cont.	0.33	0.75	0.84	0.75	2.67		
	Nucleon Det. Effi.	2.00	2.01	2.01	2.02	2.02		
$\Lambda(D)$	Radiative Corr.	2.31	3.32	3.77	3.87	5.47		
$\Delta(h)_{sys}$	Cut Stability	0.16	0.15	0.40	0.67	0.60		
	FSI	0.04	0.01	0.02	0.02	0.03		
	Total	3.08	3.95	4.37	4.48	6.44		
$\Delta(rac{G_M^n}{\mu_n G_D})_{sys}$	Inelastic Cont.	0.17	0.38	0.42	0.37	1.34		
	Nucleon Det. Effi.	1.00	1.00	1.01	1.01	1.01		
	Radiative Corr.	1.16	1.66	1.88	1.94	2.73		
	Cut Stability	0.03	0.07	0.20	0.33	0.30		
	\mathbf{FSI}	0.02	0.00	0.01	0.01	0.01		
	σ^p_{Red}	0.82	0.92	1.35	1.52	1.33		
	G_E^n	0.55	0.65	0.62	0.66	0.55		
	Total	1.83	2.27	2.64	2.79	3.53		

Preliminary Results

Statistical and Systematic errors have been added in quadrature.

Impact on the Quark Form Factors (Preliminary)

- The bands represent flavor decomposition from Ye 2018 fit.
- The points are obtained by replacing G_M^n values from the fit with the ones from this work.

Summary and Outlook

- High-precision measurements of the nucleon form factors in a wide range of Q^2 reveals their electromagnetic structure. The SBS program at JLab's Hall A will extend these measurements up to and beyond 10 (GeV/c)².
- SBS-GMn, the first SBS experiment, finished data collection in Feb 2022, to extend the range of high-precision G_M^n measurement from $Q^2 = 4$ to 13.5 (GeV/c)².
- The extracted preliminary results is in line with our precision goal and will vastly advance the current understanding of the neutron's internal structure.
- Significant efforts are ongoing to publish these beautiful results as soon as possible. Stay tuned!

Acknowledgements

- Thanks to SBS-GMn and -nTPE Graduate Students–Vanessa Brio (Catania U.), John Boyd (UVA), Provakar Datta (UConn), Nathaniel Lashley-Colthirst (Hampton U.), Ralph Marinaro (University of Glasgow), Anuruddha Rathnayake (UVA), Maria Satnik (W&M), Sebastian Seeds (UConn), Ezekiel Wertz (W&M)
- Thanks to SBS-GMn Spokespeople–Bogdan Wojtsekhowski (JLab), Brian Quinn (CMU), Alexandre Camsonne (JLab)
- Thanks to the Jefferson Lab Hall A collaboration and of course the SBS collaboration and anyone else who has contributed to the success of SBS-GMn.
- Thanks to US Department of Energy Office of Science, Office of Nuclear Physics, for supporting this work.

SBS Collaboration Meeting (July 2023, JLab)

Thank You for Your Attention! Questions? Comments?

Backup Slides

Quark Flavor Decomposition of Nucleon Form Factors

Assumption of charge symmetry enables us to perform a quark flavor decomposition of the nucleon form factors, $F_1^{p(n)}$ and $F_2^{p(n)}$, in the form:

FIG. 3 (color). The Q^2 dependence for the *u* and *d* contributions to the proton form factors (multiplied by Q^4). The data points are explained in the text.

Scaling goes like $1/Q^4$. Indicates 2 gluons exchange i.e., probing inside the diquark.

Scaling goes like $1/Q^2$. Indicates

1 gluon exchange i.e., scattering

- \succ u and d quark FFs show dramatically different Q² dependence!
- > Naïve scaling argument proposed by Gerry Miller invokes diquark degrees of freedom.

e-

Far-Reaching Significance of Form Factor Measurements

• By assuming charge symmetry, flavor decomposition of the nucleon form factors is possible. The u and d quark form factors show dramatically different Q^2 dependence. A possible explanation invokes diquark degrees of freedom within the nucleons.

$$F_{1(2)}^{u} = 2F_{1(2)}^{p} + F_{1(2)}^{n}$$
 $F_{1(2)}^{d} = 2F_{1(2)}^{n} + F_{1(2)}^{p}$

• Nucleon form factors constraint GPDs through sum rules and enable their extraction from hard exclusive processes.

$$F_1^q(t) = \int_0^1 \mathrm{d}x H_v^q(x,t) \qquad F_2^q(t) = \int_0^1 \mathrm{d}x E_v^q(x,t)$$

The CEBAF at Jefferson Lab (JLab)

CEBAF at Jefferson Lab (JLab) [Aerial View]

- Jefferson Lab (JLab) is a DoE owned national accelerator facility located in Newport News, VA.
- The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is a racetrack-shaped electron accelerator located 25 feet underground.
- It can deliver up to 12 GeV continuous wave (CW) electron beam with unparalleled intensity and precision.
- JLab has 4 experimental Halls A, B, C, & D. SBS-GMn ran in Hall A.

BigBite Calorimeter (BBCAL): Pre-Shower

- PS is made of 52 rad-hard lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 9 x 9 x 29.5 cm³
- Blocks are stacked in 26 rows of 2 columns facing each other.
- mu-metal shielding around each block.

BigBite Calorimeter (BBCAL): Shower

- BB Shower is made of 189 lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 8.5 x 8.5 x 34 cm³
- Blocks are stacked in 27 rows of 7 columns facing the spectrometer axis.
- mu-metal shielding outside & between rows.

Hadron Calorimeter (HCAL)

Kinematics of SBS-GMn (Detailed)

Table I: Kinematics of SBS-GMn. Q^2 is the central Q^2 , E_{beam} is the beam energy, $\theta_{BB}(d_{BB})$ is the BigBite central angle (target-magnet distance), $\theta_{SBS}(d_{SBS})$ is the Super BigBite central angle (target-magnet distance), $\theta_{HCAL}(d_{HCAL})$ is the HCAL central angle (target-HCAL distance), ϵ is the longitudinal polarization of the virtual photon, $E_{e'}$ is the average scattered electron energy, and $E_{p'}$ is the average scattered proton energy.

SBS config.	Q² (GeV/c)²	ε	E _{beam} (GeV)	θ _{вв} (deg)	d _{вв} (m)	θ _{SBS} (deg)	d _{sвs} (m)	θ _{HCAL} (deg)	d _{HCAL} (m)	E _e , (GeV)	E _p , (GeV)
4	3.0	0.72	3.73	36.0	1.79	31.9	2.25	31.9	11.0	2.12	2.4
9	4.5	0.51	4.03	49.0	1.55	22.5	2.25	22.0	11.0	1.63	3.2
8	4.5	0.80	5.98	26.5	1.97	29.9	2.25	29.4	11.0	3.58	3.2
14	7.4	0.46	5.97	46.5	1.85	17.3	2.25	17.3	14.0	2.00	4.8
7	9.9	0.50	7.91	40.0	1.85	16.1	2.25	16.0	14.0	2.66	6.1
11	13.6	0.41	9.86	42.0	1.55	13.3	2.25	13.3	14.5	2.67	8.1

Reconstruction Challenges – Looking for Needle in a Haystack! GEM Layers on a Single Event Display ($Q^2 = 4.5(GeV/c)^2$)

Challenge: Due to very high luminosity number of 2D hit combinatorics can get astronomically high making reconstruction impossible!

- Remedy: Define a smaller track search region based on the position of highest energy BBCAL cluster.
- BBCAL constraint reduces the track search region to 2-3% of the entire GEM active area enabling reconstruction. But it required maintaining excellent gain-matching and calibration of BBCAL during run!

Physics Analysis Methods – Introducing HCAL Δx and Δy

Figure I: A conceptual and exaggerated diagram introducing HCAL Δx and Δy variables. **NOTE:** The presence of the SBS magnet has been **ignored** here.

- $\widehat{x} =$ Vertical/Dispersive direction
- \widehat{y} = Transverse direction
- **Definition of** Δx : The difference between the observed (x_{HCAL}^{obs}) and expected (x_{HCAL}^{exp}) nucleon position on HCAL in the vertical (dispersive) direction.
- **Definition of** Δy : The difference between the observed (y_{HCAL}^{obs}) and expected (y_{HCAL}^{exp}) nucleon position on HCAL in the horizontal (non-dispersive) direction.

HCAL Δx and Δy Correlation

$Q^2 = 3$ (GeV/c)², SBS 50% Field

Elastic Spot (LH₂ Data)

Analysis Cuts

Good e Track Selection Cuts:

- 1. Track Quality
 - 1. No. of GEM layers with hits > 3
 - 2. $|(vertex)_z| < 0.08 \text{ m}$
 - 3. E/p
 - 4. BB optics validity
- 2. PID Cuts
 - 1. Pre-Shower energy > 0.2 GeV
 - 2. GRINCH cluster size > 2

Good HCAL Event Selection:

- 1. HCAL energy
- 2. HCAL active area
- 3. Shower-HCAL ADC coincidence time

Quasi-Elastic Event Selection Cuts:

- 1. W² cut
- 2. $\Delta x \Delta y$ correlation / θ_{pq} cut
- 3. Δy cut

Fiducial Cut

 to match acceptance for proton and neutron

Effect of Fiducial Cut

 $Q^2 = 3 (GeV/c)^2$

No Fiducial Cut

—— HCAL Physical Boundary

---- HCAL Active Area

---- HCAL Safety Margin

With Fiducial Cut

Fiducial cut effectively matches the acceptances for D(e,e'n) and D(e,e'p) events, essential to reduce systematic error in the ratio.

Effects of Analysis Cuts

 $Q^2 = 3 (GeV/c)^2$

Inclusive W^2

 $Q^2 = 13.6 (GeV/c)^2$

• Inclusive W^2 distribution with and without $\theta_{pq} < 0.6 \deg$ cut.

Qualitative Data/MC Comparison of W^2 Distribution

 $Q^2 = 13.6 (GeV/c)^2$

• Qualitative data/MC comparison looks encouraging even for the most challenging kinematics.

Qualitative Data/MC Comparison for H(e, e'p) Events

Data/MC Comparisons of Hydrogen Elastics

Data/MC Fit to Δx Distribution for Higher Q² Points

 $Q^2 = 9.9 \text{ GeV}^2$, $0.2 \le W^2 \le 1.32 \text{ GeV}^2$, Fiducial Cuts

 $Q^2 = 13.6 \text{ GeV}^2$, $0.16 \le W^2 \le 1.44 \text{ GeV}^2$, Fiducial Cuts

Inelastic Contamination

$Q^2 = 7.4 (GeV/c)^2$

- Perform data/MC fit to Δx distribution using multiple background models.
 - Compute standard deviation of $R_{n/p}^{sf}$ values extracted from these fits.
- Quote the result as the systematic uncertainty due to inelastic contamination.

Cut Stability

- The choice of optimal cut region has some associated uncertainty.
- We vary each cut range by +10% and -10% while keeping the other cuts constant at their optimized values. Then, for each variation extract $R_{n/p}^{sf}$.
- One standard deviation of the resulting $R_{n/p}^{sf}$ distribution is quoted as the associated systematic uncertainty.

"True" HCAL NDE for MC

- One of the biggest sources of systematic errors for SBS-GMn/nTPE analysis.
- Very high detection efficiencies, almost independent of nucleon momentum, are expected from simulation.
- MC also show comparable detection efficiencies for proton and neutron, as expected from the design of HCAL.

HCAL pDE – Data/MC Comparison

Predicted TPE Contribution

Credit: Andrei Afanasev

$E_e {\rm GeV}$	$\theta_{e'} \deg$	$Q^2 \ { m GeV}^2$	$(1+\delta)_p$	$(1+\delta)_n$	$(1+\delta)_p/(1+\delta)_n$
3.73	36.0	2.99	1.01809	1.00107	1.01696
4.03	49.0	4.5	1.01746	0.999145	1.01833
5.97	46.5	7.46	1.0202	0.998075	1.02217
7.91	40.0	9.83	1.02168	0.998083	1.02364
9.86	42.0	13.5	1.02242	0.998544	1.02391

Table 1: Table of relevant kinematics in *ep*- and *en*- scattering. The last three columns represent the two-photon corrections for a proton neutron target. The last column is the ratio of the corrections off protons vs neutrons.

Impact on the Quark Form Factors (Preliminary)

• Possible zero-crossing of F_1^d at $Q^2 = 9.8 \pm 1.8 (\text{GeV/c})^2$ (obtained from a linear fit to data).

Impact on the Quark Form Factors (Preliminary) contd.

$$\begin{split} F_1^d &= 2F_1^n + F_1^p \\ &= 2\frac{\tau_n G_M^n + G_E^n}{1 + \tau_n} + \frac{\tau_p G_M^p + G_E^p}{1 + \tau_p} \\ &= \frac{2\tau_n}{1 + \tau_n} G_M^n + \frac{2}{1 + \tau_n} G_E^n + \frac{\tau_p}{1 + \tau_p} G_M^p + \frac{1}{1 + \tau_p} G_E^p \\ &= G_D \left[\frac{2\tau_n}{1 + \tau_n} \frac{G_M^n}{G_D} + \frac{2}{1 + \tau_n} \frac{G_E^n}{G_D} + \frac{\tau_p}{1 + \tau_p} \frac{G_M^p}{G_D} + \frac{1}{1 + \tau_p} \frac{G_E^p}{G_D} \right] \\ &\approx G_D \left[1.6 \frac{G_M^n}{G_D} + 0.4 \frac{G_E^n}{G_D} + 0.8 \frac{G_M^p}{G_D} + 0.2 \frac{G_E^p}{G_D} \right] \\ &\approx G_D \left[(-2.239 \pm 0.085) + (0.249 \pm 0.203) + (1.947 \pm 0.023) + (-0.015 \pm 0.033) \right] \end{split}$$