Measurements of collectivity In
photonuclear collisions with
ATLAS o

Blair Daniel Seidlitz -~
: L : : : a A TT D QATTV
Current institution: Columbia University CoLuMBIA [UNIVERSITY
IN THE CITY OF NEW YORK
Graduate of University of Colorado Boulder @T
. ] ] . University
Advisor: Dennis Perepelitsa & Jamie Nagle of Colorado

Boulder

GHP Mar. 16" , 2025




Dennis Perepelitsa Jamie Nagle

N

BN

,., ey gﬁ?j’ i

{

Special thanks to Sruthy Das
who | am showing some new
results from

AT A P

NN A e T fhs
A R I L R







Spectators

Participants




Initial state







Viscous Hydrodynamics
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Azimuthal anisotropy
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Single-particle azimuthal anisotropy

ng) a 1+ 2v,cos(d) + 2v,cos(2d) + 2v,cos(3P) +..
n=1 n=2 n=3




Two-particle correlation

For the purposes of this talk

All charged particle tracks
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System
size

Pb+Pb

p+Pb

pp

Momentum conservation
CMS PbPb s, =2.76 TeV, 220 < Nji'"™ < 260 .
22T Jets & particle decays
1<pT <3 GeVic g \

1<P:§sw<3Gev{c = ‘. Termed “nonflow”
Not collective pheno
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CMS pPb |s,,, = 5.02 TeV, 220 < NJy'"™ < 260

trig
1<p, ~<3GeV/c
T
CMS pPb (s, = 5.02 TeV, 220 ,N,’;”<zso 1< p:ssoc <3 GeV/c /

1<p!®<3Gevic )
1<pl**<3GeVic <

CMS pp |'s = 13 TeV, N:::"ne > 105
1< P < 3GeVic
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System
size

920 GeV
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Recent measurements

Today

e+p

@

H1 experiment

y+p collectivity

y+A collectivity

224 color

g dipole

talk
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https://arxiv.org/abs/2101.10771
https://agenda.infn.it/event/28874/contributions/168935/attachments/94719/130290/20220701-ICHEP_yenjie_v8.pdf
https://arxiv.org/abs/2204.13486
https://www-h1.desy.de/publications/H1_sci_results.shtml
https://arxiv.org/abs/2106.12377
https://indico.cern.ch/event/895086/contributions/4705215/attachments/2422061/4145811/QM2022BelleTPC.pdf

Ultra-peripheral
collisions



Photons in heavy ion collisions

Brandenburg- good up-to-date review as well:

Lorentz contracted electromagnetic fields of moving charges
can be treated as a flux of photons.

Equivalent photon approximation (EPA)

* EM field are a flux of quasi-real photons

* Developed by ] . and

* Implemented in STARLIGHT, SuperChic
» Differences with full QED calculations

* Quasi-real photon

E, proj. frame E, lab frame W,y
Eq. 1/(2*1.2 A3 fm)  y/(1.2 AY3fm)  V(4EE,)
LHC 30 MeV 160 GeV 1.7 TeV
RHIC 30 MeV 6 GeV 50 GeV
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https://cds.cern.ch/record/550708/files/0205086.pdf
https://link.springer.com/content/pdf/10.1007/BF01333110.pdf
https://journals.aps.org/pr/pdf/10.1103/PhysRev.45.729
https://arxiv.org/abs/2103.16623

Photon wave function
Low (Q? = 0) virtuality photons

\/— ) \/l’}TO]:M V) - \/-1?”-11:1\/1 _
= \/ 43 | ;barc E V > ' _ |qq>
V W, 4
Total
wave function g’ e ¥ o8 ——
Bare photon Vector meson component
Interacts via EM force Interacts via QCD
Point-like Extended QCD substructure
Two-photon interactions Photon-nucleus interactions
)e ) ) @b
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Two-photon interactions [bare) ® [Vbare)

—
Dbil

ATLAS PbPb(yy) — u'w(Pb 'Pb")
5.02 TeV 0.48 nb™ P, >4 GeV, |T]l| <24

Steinberg, Initial Stages 2019

P

<2 GeV v |<08
T.up kp

@ Data (bkgr sub.)

[ ] sTARIight

—
(=]
»

Pure EM interactions

« Back-to-back products

* Precision tests of EPA and QED
calculations of photon flux

« Good agreement with EPA

Examples

doldm,, [ub/GeV]

—
]

* Pure EM processes 2
. év — YY z
* VY — WM 5
* Yy —IT 2
¢ Yy —ee ::
¢ vy —MM

20 30 4050 107 2x10°
m,, [GeV]



https://arxiv.org/abs/2011.12211
https://arxiv.org/abs/1904.03536
https://arxiv.org/abs/2008.05355
https://arxiv.org/abs/2011.12211
https://arxiv.org/abs/2204.13478
https://arxiv.org/abs/2207.12781
https://arxiv.org/abs/2408.11035

Single-photon interactions

e
bl
i
| 4 Pb
v 3 3 JV

Quasi-elastic: y+A—A"+V 1§



Single photon interactions

2,510 GeV 2,510 GeV

Non-diffractive/DIS interactions
Exchange of QCD quantum numbers
QCD particle production

Quasi-elastic: y+A—A"+V 1§



Photonuclear collisions

Direct yA collisions Resolved yA collisions
Photon couples directly to nuclear parton photon virtually resolved into hadronic state

\ - uon” On t T
Ry E— AN ; "
\“—'67 Rapidity %Z,z (>|} artially +y
gap filled

/ |
\ Rapidity

gap

/an

No rapidity

Select events based on primarily
» Single-sided nuclear breakup “OnXn” (zero-degree calorimeter ZDC)

» Rapidity gaps
Minimum bias selection includes both but is dominated by resolved events.




A Toroidal LHC Apparatu$S
(ATLAS)



ATLAS detector

Tile calorimeter |n| < 1.7

Charged-particle
Tracker |n]| < 2.5

Zero-degree
Calorimeter

In|>8.3 Hadronic endcap 1.5< |n|< 3.2

LAr EM calorimeter |n| < 3.2

Forward calorimeter 3.2< || <4.9

17




Photonuclear collisions
N
ATLAS



20

Pb+Pb, 5.02 TeVv

ATLAS .=
Event: 1064766274 ;i

EXPERIMENT 2018-11-11 22:00:07 CEST

Pb \ photon
going - going
direction direction
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Pb+Pb, 5.02 TeVv

Al LAS fvants 1064
Event: 1064766274 il i

EXPERIMENT 2018-11-11 22:00:07 CEST

Pb | photon
going . going
direction B V direction

{ \




Collecting photonuclear events

21

Trigger name: HLT _trk25 FgapC5 L1 TE3 ZDC A VZDC C VTE200 7?77

g——-——-'\N

Level 1

ZDC

ZDC

Signal

Background

Select photonuclear

events based on

* Single-sided nuclear
breakup

* Upper and lower bound
on event activity
* Personally tuned for high-
multiplicity yA

* Presence of rapidity gaps
(FCALV< 5 GeV)



Rapidity gaps LY, and N,

8-‘2 ' N L B L B N L B L B
=140 ATLAS
I Pb+Pb, 1.0 ub™
120F PhHPph VS =5:02 TeV, OnXn 10°
- MB trigger .
100} . | 0
E .- | | E - 103
80 r | 4 4
E LY (Photonuclear
60} . - ) <102
- Mgl
401
- 10
20:— |
AT PR L S 1
0 1 2 3 4 5

Sum of rapidity gaps
between particles == =271
greater than 0.5

6_-.“ — ! U L L L L L =
O | ATLAS E
S K Pb+Pb, 1.0 pub™'- 1.7 nb™"
=< 107'E , 1.0 ub™- 1.7 nb™ _
5 oF Sy = 5.02 TeV, OnXn 7
5 1075 E
=107F .y =
3 = CTV I
2 104k o
~ 109} -
10°F -
108k ¢ £An>25 " =

-, P -
10—92_?EY&T]<1 ” _g
10—10 § co b e by Ly m I T :

0 20 40 60 80 100 120

n|<2.5, pT>4OO MeV N(T;C

Photonuclear events have large rapidity gaps in the photon-going

direction and a steeply falling multiplicity distribution.


https://arxiv.org/abs/2101.10771

Rapidity gap comparison to MC
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MC / Data

Pb+Pb, 1.0 ub™*- 1.7 nb™'-- DPMJET-IIl y+Pb

I'Sun = 5.02 TeV, OnXn DPMJET-IIl y+p DPMJET-II Y+A
3 Pythia8 y+p * Photon flux generated by STARLIGHT

—HIING Pb+Pb « DPMJET simulates YA collision

DPMJET-III y+p

« Utilizes a Pb+Pb photon flux from
STARLIGHT

 Serves as a comparison to
PYTHIAS8

PYTHIA8 y+p
* Reweighted to STARLIGHT flux

HIJING Pb+Pb background MC

35 4 45 5
2,An MC normalized to data in control regions

Qualitative agreement with MCs, PYTHIA being the most compatible

Indicates high purity y+A sample for £ An > 2.5
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https://arxiv.org/abs/2101.10771

dN,./dn in YA collisions

o~  [r T v r T T 7 rv r T T T T T T T T T T T T
:oi ATLAS : ; IIIIIIIIIIIIIIIIIIII ] ;‘l
<) (y) (x10)  Pb+Pb, 1.7 nb" ] 3 | o
3 w20 )\F =s02Tev] o .. z
> 50 nxn, Z,An " > 2.5 7 2 | 3
g ) (50) 25 <N <60 10 - ] 10° =
Al Extrap. to p,> 0 GeV | E .
— B 'S 1 10 2 — .
[ ] S B
¢ 8
(1 1 | 10 E 10—4 l_::— _
I:-:IIZ.ZII:‘I P %
10° 85
¥ ¥ n.::.: i | >
or o s | o
5 T 1 orveer i o B E |y
—— - rt ©
0 el ey T e e ] EAT]>25 107102 :10
2 1 0 1 2 i =N
y (n) 0 10 20 80 40 50 60 70 80
rec

dN_ /dn of photonuclear events - very similar shape with N, > 10
MC comparison show 200 GeV to 1 TeV CM energy (W)

W, \(N,,) trend comports with N, trend in data dN,,/dn


https://arxiv.org/abs/2101.10771

Two-particle correlations and non-flow

Momentum conservation
ATLAS HM 37 < N <60 .
Pb+Pb, 1.0 ub™'- 1.7 nb"* PR Jets & partlcle decayS
VSuy = 5.02 TeV, OnXn G T p .y
Termed “nonflow
Not collective phenomenon

0.4 < p2<2.0GeV
04< p‘; <2.0 GeV

26


https://arxiv.org/abs/2101.10771

Two-particle correlations and non-flow 26

Momentum conservation
ATLAS HM 37 < N° < 60 .
\l?b_+P_b,51(.)(;p_lx_b'\‘/- 17" s Jets & pPa rticle decayS
Termed “nonflow”
Not collective phenomenon

= ‘
Y ATLAS 1.0
> 1.16— Pb+Pb, Sy = 5-02 TeV

2.0<|An|<5.0
—  Fit Y”dgE+F YLM{O}

L]

G+FY™ ¢ HMData

0.4 < p2<2.0GeV
04< p: <2.0GeV

VITHEYH0) S HMB0 < NP <37 ©
7 LM 15 <N <20

No clear
nearside ridge

Need to remove nonflow


https://arxiv.org/abs/2101.10771

Non-flow removal in YA correlations

High-multiplicity (HM) correlation data

ATLAS Preliminary
Pb+Pb, 1.0 ub™"- 1.7 nb™
VS = 5.02 Tev
20<]|An]|<5.0

Low multiplicity (LM)
template for jet/non-flow correlation

Nonflow subtraction
e HM fit with LM data
and flow coef.

4 M Data Bl - HM and LM assumed

LM Fourier Fit

Y”H{ﬂu’:} —

15 < Nf <20

to have same flow

04< p: <0.7 GeV

0.4 <p°<20GeV shape
* Different LM selection

FY'"M(Ag) + G 142 S

MH
r,:

| H:ﬁﬁ"—’],

After nonflow subtraction clear

leads to similar results

ATLAS 10ub'-1.7 nb
1161~ Pb+Pb, |5, = 5.02 TeV
2.0<|An)| <50

—— Fit - Y"d; +F YLH(O]

G+FY™M & HM Data
7 HM 30 < Nfr'::' <37
LM 15 < Nfr'::' <20

Yy S +E YH(0)

04< p_Elf < 2.0 GeV + Data -
b ridge
04< [ 2.0 GeV Y

modulation

27


https://arxiv.org/abs/2101.10771

v, in photonuclear collisions

ATLAS Template Fit

Pb+Pb |[s, =5.02 TeV 2.0<|An|<5.0
1.0 ub™'- 1.7 nb™
LAn>2.5, 0nXn
0.4 < pj;b <2.0GeV
¢ v, Photonuclear
® v, Photonuclear

Significant nonzero v and
photonuclear collisions

N

28


https://arxiv.org/abs/2101.10771

v, in photonuclear collisions

ATLAS Template Fit Significant nonzero v, In

Pb+Pb |5, =5.02 TeV 2.0<|An|<5.0 photonuclear collisions
1.0 ub™'- 1.7 nb™
=, An > 2.5, 0nXn 0.5< pi‘b <5.0 GeV
0.4 < p2°<2.0 GeV 5V,

¢ v, Photonuclear

® v, Photonuclear

Flat v,(N,) within statistical
precision

YA has significantly lower v, than
PP



https://arxiv.org/abs/2101.10771

v, in photonuclear collisions

ATLAS y y Template Fit
Pb+Pb, 1.0 lLLIE.! -1.7nb 20 < ‘Afﬂ <50

V/Snn = 5.02 TeV, OnXn
2 An>2.5

20 < N™° < 60

¢ Photonuclear

* p+Pb, N° = 60
mpp, N~ =60

& W

Similar trend in v,(p;) as
other hadronic systems.

Similar low-p; behavior as pp
and p+PDb but systematically
lower.

High-p+ v, Is falling to large
negative values (see backup)
which is from the over-
subtraction of nonflow.

This effect is present in pp but
IS larger and sets in at lower p-
IN YA (ATLAS-CONF-2020-018)

29
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(3+1)D hydrodynamic model comparison

Collectivity in Ultra-Peripheral Pb+PDb Collisions at the Large Hadron Collider

Wenbin Zhao,! Chun Shen,"? and Bjorn Schenke?

Initial state

\/LEGLM

_ \/ 1?’?(1]:M .
Y) = VY3 | bare) + Z V) + qq)
1% Joz
pV.w,d
Rho Wave function:
Gaussian hot spots
Rho PDF:

Defines the longitudinal
extent of energy deposition

rv¥M = N,z%(1—z)"

<size>is~1/Q

Final state

Viscous Hydrodynamics
(3+1)D MUSIC+UrQMD

30



New y+Pb theory comparisons

0.12FATLAS 3DGlauber + MUSIC + UrQMD
Vo{2} va{2} Vo{2} Va{2}
m e UPC — — y*+Pb P(\—)

p+Pb \s s, =5.02 TeV

0O 20 40 60 80 100 120 140 160
I\lch

Nonzero yPb v,

comparison to
3DGlauber + MUSIC +UrQMD

Why Is

v, (Y *Pb) < v, (pPb)

Correlations performed in forward
rapidity in yPb suppresses observed
collectivity

0
T @B vs. V@b

31


https://arxiv.org/abs/2203.06094
https://arxiv.org/abs/2101.10771

Why is yPb v, smaller

* Correlations in small systems are
performed with a rapidity gap
between the particles

* The event plane can fluctuate
between these rapidities, which
decreases the observed v,

* This effect is larger at forward
rapidities.

* Because yPDb Is so boosted the
"forward rapidities” are probes
relative to other systems with
the ATLAS detector.

AMPT Xe+Xe 5.44 TeV




Why is yPb v, smaller

* Correlations in small systems are
performed with a rapidity gap
between the particles

* The event plane can fluctuate
between these rapidities, which
decreases the observed v,

* This effect is larger at forward
rapidities.

* Because yPDb Is so boosted the
"forward rapidities” are probes
relative to other systems with
the ATLAS detector.

3DGlauber+MUSIC+UrQMD, 20<Nch<60
v*+Pb@894GeV, Ref: 1.0 <n < 2.5
p+Pb@894GeV, Ref: 1.0 <n < 2.5
p+Pb@5020GeV, F{ef 1 0 <n <2.5

33


https://www.epj-conferences.org/articles/epjconf/pdf/2023/02/epjconf_sqm2022_01002.pdf

Measurements of longitudinal decorrelation

F, Is the fractional change in v, , per

a unit rapidity

It characterizes longitudinal
decorrelation effects well

density

First decorrelation measurement in

small systems

"his class of measurements probes
the shape of the initial state energy

AMPT initial-state partons
mf, F,

bt

pp 13 TeV 1.7 pb”
¢ F, Non-flow sub.
W F; Non-flow sub.

7| <2.5
40<n* <49
03 < p2 <5.0 GeV

20 40 o660 80 10 120 140
Nrec

34


https://arxiv.org/abs/2308.16745

3+1D Hydrodynamic model comparison in YA

»! @O

3DGlauber+MUSIC+UrQMD
\'s,. =894 GeV
Q? = 0.04 GeV?

V' —— Q2 =0.0625 GeV?
4 ™ ATLAS data Q% =0.1 GeV?
— — Q2=0.25 GeV?

g, ellipticity
Changes in probe virtuality affects the shape of initial energy density
No direct access to Q2 in UPC yA

35



Azimuthal anisotropy in eA collisions?

DIS @ Scattered PhOtOpdeUCUOﬂ Scattered
el electron ¢ - B - @ electron
> Inlco?"nng
— - electron
Incoming e
electron .
¢ ¢
¢ - ¢ e
» e 9§ ¢ e &
©
(9 | )
« (¥
¢ g ¢ ¢

* DIS: Point-like interaction region would suggest little geometry

@/ ®
/%% %%3@3%\ :
o me >, * Photoproduction: photon mostly fluctuates to a vector meson and
| Q interacts hadronically with the target. This provides an energy deposit
R ) : e
with a transverse extent and possible elliptic geometry.

* Q%range in the previous slide should be accessible by EPIC at the EIC

37



CGC model comparison

Color Glass Condensate model calculation
containing initial-state correlations
which gives rise to nonzero v,

A (nuclear target)

B, (projectile size)

Correlated color domain
size is ~ 1/Q,

ATLAS Preliminary

Pb+Pb

1.0 ub*-1.7 nb”’
\S—NN =502 TeV
L An> 2.5, OnXn

20 < N < 60

CGC Theory - Shi et al.
2=5GeV?
2z 4 GeV?
2= 3 GeV?
2=2GeV?
2 = 25,20, 15, 10, 6 GeV >

¢ Photonuclear .= . .

* Larger number of domains struck

—lower v,

* Quasi-real photon is predicted to

have large B,

33
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/ ' QGP phase
\ Radial flow

rQ
%%) Populating QCD

degrees of freedom,

\

strangeness



Strangeness enhancement in YA

* Strangeness enhancement, baryon
anomaly, baryon stopping...

* Novel incoming guantum numbers in
vPb
u: 498.3

* Plots of displaced vertex identified particle |
candidates in yPb a2

ATLAS + Data
Pb+Pb, 1.7 nb™, s, = 5.02 TeV — Global fit
OnXn, £,AN* >2.5 Sil?nallfilt ,

rec oly.
25 = Non =50 Bkg: Misid
y:[-2.5,2.3] | — Total Bkg fit
p.: 0.0, 8.0] GeV

Candidates / 2 MeV

Signal

0 ‘ N 550489
KS

¢

¢ Data
— Global fit

OnXn, £AN®> 25 Signal fit

25 < N"™ < 60 ' —Bkg: Poly. 2
y: [-1.6, 1.6]

p.:[0.5,5.0] GeV

60 580
m,. - [MeV]

¢ Data ATLAS

—Global fit  Pb+Pb, 1.7 nb™, s, = 5.02 TeV
Signal fit . OnXn, £,AN* > 2.5
Bkg: Poly. 3 25 < N' <

- - Bkg: Mis-id > = Nep <60

— Total Bkg fit y: [-2.5, 2.5]
p.:[0.5,8.0] Gev

Candidates / 2 MeV

Signal_

N_-— 1412
w: 1322.3
.26
0,/6,:2.5

=
[}
=
[aV}
~
w
)
©
9
©
c
©
©)

N 129263

n:1116.3
.27
0,/0, 2.5

0
1280 1290 1300 1310 1320 1330 1340 1350 1360
m, - [MeV]

0 t P ol T e R T T D e s i NS
108010901100111011201130 114011501160 1170
m, - [MeV]




|dentified particle <pT>in yA

* <pT> with

* Higher energy density achieved
ATLAS in higher multiplicity collisions

Poepb, 1.0 ' 1.7t VNS08 Tl ) oy, MO 081 leads to stronger radial
VS = 5.02 TeV

) [GeV]
o

(p,

0 . M
OnXn, £,AN > 2.5 Ks (¥) == Hybrid model expansion.
Extrap. to p_> 0 GeV a E‘A )

* Thought of as a signature of
QGP formation

e Larger <pT> in the Pb-going
direction

e Qualitative agreement with
the Hydro model excluding K°

e Common in these new data-model comparisons

Behavior in data is consistent with qualitative picture of radial flow 40
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Baryon anomaly in yA

Phys. Rev. Lett. 111, 222301

Pb-Pb at \s,,=2.76 TeV, lyl<0.5

—&— 0-5%

—&— 20-40 %

—¥— 40-60 %
60-80 %

—e— 80-90 %

—+— ppat {s=7TeV, lyl<0.5

—&— pp at {s=0.9 TeV, lyl<0.75
systematic uncertainty

0
A/KS

* Larger hydrodynamic push to baryons as the QGP velocity field cools into hadrons
* Observe large baryon enhancement at mid-pT in YA, similar to pPb
* Possibly see larger baryon enhancement in the Pb going direction

41


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.222301

Baryon anomaly in yA

y+Pb

oAk ] =K (x 2)

[ Solid y: [-1.6,-0.8]
0.8l- Openy: [0.8,1.6]

Baryon / Meson

0.6~

: L
o

ATLAS |
Pb+Pb, 1.7 nb™ -
[Sp = 5-02 TeV |
OnXn, AN >25 |
25 < N;° <60

Baryon / Meson

p+Pb

1o AKE [m]Z7KE (x 2) ATLAS _|
I >
- Solid y: [-1.6,-0.8] p+Pb, 0.1 nb |
0.8~ Openy:[0.8,1.6] (S = 5.02 TeV ]
- 25 < N3’ <60 |
i z
0.6 3 213 -
[ |u§ E |—(J_
C = .
0.4} ﬁ — B
LB |

Phys. Rev. Lett. 111, 222301

Pb-Pb at \s,,=2.76 TeV, lyl<0.5

—&— 0-5%

—&— 20-40 %

—¥— 40-60 %
60-80 %

—e— 80-90 %

—+— ppat {s=7TeV, lyl<0.5

—&— pp at {s=0.9 TeV, lyl<0.75
systematic uncertainty

* Larger hydrodynamic push to baryons as the QGP velocity field cools into hadrons
* Observe large baryon enhancement at mid-pT in yA, similar to pPb
* Possibly see larger baryon enhancement in the Pb going direction

Observe large baryon enhancement at mid-pT in yA, similar to pPb
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Conclusion 42

RENIIES
Photonuclear v, has a similar order of magnitude and trends as other ’_
previously measured hadronic systems

Intuitive property of hadronic-like photonuclear collisions (photon — vector mesonv —

Theory comparisons

Quantitative agreement with h¥drodynamic models which translates
initial geometric anisotropy to final-state momentum anisotropy
through final-state interaction e.g. hydro

Compared to schematic CGC calculation

®,
= A K

New results in identified hadrons
New ATLAS measurements probing strangeness enhancement, baryon
anomaly and radial flow

Future study
In Run 3 ATLAS has collected 2-3x more high-multiplicity yA data!
Explore photon Q? and tunable probe size at the EIC




Thank you




2AAN 4,

ATLAS calorimeter and tracker

Event Selection: 22, An ., > 2.5




Comparison to DPMJET-III

ATLAS Preliminary 04< p:" <2.0 GeV
Pb+Pb, 1.0 ub™- 1.7 nb"' 2.0 < |An| <5.0

ATLAS Preliminary 0.4< p:" <2.0GeV
Pb+Pb, 1.0 ub™"- 1.7 nb" 2.0 <|An| < 5.0
\'Syn = 5.02 TeV, OnXn $v,,MC
Z,An>25 y Vo, Data
DPMJET-IIl y+Pb truth g v, MC
Template fit y Va4 Data

Sy = 5.02 TeV, OnXn $v,,MC
LAn>25 ¢ v,, Data
DPMJET-IIl y+Pb truth & v, , MC
Fourier fit m v, 4 Data

ATLAS Preliminary

Simulation
DPMJET-III y+Pb
I,An>25

10 20 30 40 50 60 7

=
[0}
O,
-
©
"85
=
©
P =
o

OH/Nd

20 25 30 35 40 45 50 55 60

truth rec
N ch 7 N ch

001 =
20 25 30 35 40 45 50 55 60

truth rec
Nch ' Nch

* DPMIET-III predicts the photon energy changes by about 1-2
standard deviations over the multiplicity range of the
measurement and a doubling of the mean W, for 10 to 60 N, .

* Large difference between measured v, , before and after template
nonflow subtraction for data and DPMIJET-III.

* Small negative v, , after template fit



DPMIJET-IIl 2PC example
P g S
More jet-like away side in ° w37 zx';']:' cewent
DPMJET-IIl than in data. This
O4<p <2.0 GeV
produces the larger 46504 < pt < 2.0 GeV

unsubtracted v, , seen on the
previous slide. Small
remaining modulation after 8151 v, x10°= 0.2 + 0.1
) ] V,x10°=-0.1+ 0.1 *MCData s 7
nonflow subtraction seenin B —" :
the lower panel. DPMIJET-III is e

of limited use in modeling the [EXTEMERTECaR RN i:-+~;.+.,..

soft correlations in
photonuclear events.
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Purity of the photonuclear selection

ATLAS Internal

Pb+Pb 2018, 1.73 nb™
Sy = 5.02 TeV, OnXn
¢ DPMJET-IIl + HIJING N'*° derived

% DPMJET-III + HIJING X,An derived
4 Pythia8 + HIJING £, An derived

* A two-component fit was
performed (signal MC) +
(background MC) to data
distributions to determine the
purity.

* The N, and 2 An distributions
were used.

* A conservative approach was
taken and the worst purities were
used to assess possible effects.

* A pp Ad correlation with the
same selections was subtracted
#according to the bins purity)

rom the photonuclear data as a
systematic variation and the
sensitivity is included in the final
result.
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Factorization v,(N,)

ATLAS Preliminary 20<|An|<5.0
Pb+Pb, 1.0 ub'- 1.7 nb" 0.4 <p?<2.0GeV
sy =5.02TeV,0nXn LM 15< N3° <20
Z,An>2.5

$ 0.4 <p°<2.0GeV

5 0.4 <p?<0.9GeV

ATLAS Preliminary 20<|An|<5.0
Pb+Pb, 1.0 ub™"'- 1.7 nb" 0.4 <pZ<2.0GeV
VS =5.02TeV,0nXn LM 15< N© <20
A= 2.3 § 0.4 < p®<2.0 GeV
L 0.4 <p2 <09 GeV
n0.9<pb<2.0GeV

0.9 < p: <2.0GeV

Q
20 25 30 35 40 45 30 35 60 20 25 30 35 40 45 50 55 60

Nrec Nrec

Vi (pfl{) = Vn,n (])'CII" pglz)/vn (p!lz) = 1"?1"1._1'1(]?7%’ p!lz)/ 1",’"3.-.’"3(1'7!12’ pglz)

V,(Ng,) shows insensitivity to associated particle p; range. This is
consistent with a hydrodynamic paradigm where particle anisotropies
are generated from a single-particle flow vector for all px.
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