Measurements of collectivity in photonuclear collisions with ATLAS

Blair Daniel Seidlitz

Current institution: Columbia University

िनि

COLUMBIA UNIVERSITY in the city of new york

Graduate of University of Colorado Boulder Advisor: Dennis Perepelitsa & Jamie Nagle

GHP Mar. 16th , 2025

Dennis Perepelitsa

Jamie Nagle

Y

Participants

Viscous Hydrodynamics $T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + P[\epsilon] \Delta^{\mu\nu} - \eta[\epsilon] \sigma^{\mu\nu} - \zeta[\epsilon] \Delta^{\mu\nu} \nabla^{\perp}_{\lambda} u^{\lambda}$ \otimes Ideal Hydro Viscous Hydro **Equation of state** transport coefficients $\eta[\epsilon] \, \zeta[\epsilon].$ $P[\epsilon]$ Momentum Initial state Hydro anisotropy

Two-particle correlation

For the purposes of this talk

All charged particle tracks

γ+Α

12

Recent measurements

e⁺+e⁻

00000000

ICHEP22 talk QM22 talk

13

Ultra-peripheral collisions

Photons in heavy ion collisions

Lorentz contracted electromagnetic fields of moving charges can be treated as a flux of photons.

Equivalent photon approximation (EPA)

- EM field are a flux of quasi-real photons
- Developed by <u>Fermi</u>, <u>Weizäcker</u>, and <u>Williams</u>
- Implemented in STARLIGHT, SuperChic
- Differences with full QED calculations
- Quasi-real photon

	E _γ proj. frame	E _γ lab frame	$W_{\gamma N}$
Eq.	1/(2*1.2 A ^{1/3} fm)	γ/(1.2 A ^{1/3} fm)	$\sqrt{4E_{\gamma}E_{N}}$
LHC	30 MeV	160 GeV	1.7 TeV
RHIC	30 MeV	6 GeV	50 GeV

Photon wave function

Low $(Q^2 = 0)$ virtuality photons

$$|\gamma\rangle = \sqrt{Z_3} |\gamma_{\text{bare}}\rangle +$$

Total wave function

 $V = \rho^0, \omega, \phi$

 $4\pi \alpha_{\rm EM}$

<u>Bare photon</u> Interacts via EM force Point-like

Vector meson component

Interacts via QCD Extended QCD substructure

Two-photon interactions

Photon-nucleus interactions

 $\frac{\sqrt{4\pi\alpha_{\rm EM}}}{f_{q\bar{q}}}$

 $|q\bar{q}\rangle$

Two-photon interactions

 $|\gamma_{\rm bare}\rangle \otimes |\gamma_{\rm bare}\rangle$

arXiv:2011.12211

Steinberg, Initial Stages 2019

Pure EM interactions

- Back-to-back products
- Precision tests of EPA and QED calculations of photon flux
- Good agreement with EPA

- $\begin{array}{c} \gamma\gamma \rightarrow \gamma\gamma \ arXiv:1904.03536 \\ \& \ arXiv:2008.05355 \end{array} \end{array}$
- γγ → μμ <u>arXiv:2011.12211</u>
- γγ → π arXiv:2204.13478
- γγ →ee <u>arXiv:2207.12781</u>
- γγ → MM <u>arXiv:2408.11035</u>

Pb

Pb(*)

Single-photon interactions

Single photon interactions

Quasi-elastic: $\gamma + A \rightarrow A^* + V 15$

Photonuclear collisions

Resolved γA collisions photon virtually resolved into hadronic state

Photon couples directly to nuclear parton

Direct vA collisions

Select events based on primarily

- Single-sided nuclear breakup "**0nXn**" (zero-degree calorimeter ZDC)
- Rapidity gaps

Minimum bias selection includes both but is dominated by resolved events.

A Toroidal LHC ApparatuS (ATLAS)

ATLAS detector

Photonuclear collisions in ATLAS

Pb

Pb+Pb, 5.02 TeV Run: 365681 Event: 1064766274 2018-11-11 22:00:07 CEST

photon going direction

20

Pb+Pb, 5.02 TeV Run: 365681 Event: 1064766274 2018-11-11 22:00:07 CEST

20

photon

going

 $\bigwedge \bigwedge \checkmark$

Pb going direction direction **Rapidity gap** Sparse particle production Pb $\Sigma E_{T}^{FCal} = 71 \text{ GeV} (left), 0.9 \text{ GeV} (right)$ 71 tracks, $p_{\rm T} > 0.4$ GeV

Collecting photonuclear events

Trigger name: HLT_trk25_FgapC5_L1_TE3_ZDC_A_VZDC_C_VTE200 ???

<u>Select photonuclear</u> <u>events based on</u>

- Single-sided nuclear breakup
- Upper and lower bound on event activity
 - Personally tuned for highmultiplicity γA
- Presence of rapidity gaps $(FCAL_{\gamma} < 5 \text{ GeV})$

Rapidity gaps $\Sigma_{y} \Delta \eta$ and N_{ch}

Photonuclear events have large rapidity gaps in the photon-going direction and a steeply falling multiplicity distribution.

arXiv:2101.10771

Rapidity gap comparison to MC

DPMJET-III γ+A

- Photon flux generated by STARLIGHT
- DPMJET simulates γA collision

DPMJET-III γ+ρ

- Utilizes a Pb+Pb photon flux from STARLIGHT
- Serves as a comparison to PYTHIA8
- PYTHIA8 γ+p
 - Reweighted to STARLIGHT flux
- HIJING Pb+Pb background MC

MC normalized to data in control regions

Qualitative agreement with MCs, PYTHIA being the most compatible **Indicates high purity \gamma+A sample for \Sigma_{\gamma}\Delta\eta > 2.5** arXiv:2101.10771 $dN_{ch}/d\eta$ in γ A collisions

 $dN_{ch}/d\eta$ of photonuclear events - very similar shape with $N_{ch} \ge 10$ MC comparison show 200 GeV to 1 TeV CM energy $(W_{\gamma N})$ $W_{\gamma N}(N_{ch})$ trend comports with N_{ch} trend in data $dN_{ch}/d\eta$ 25

Two-particle correlations and non-flow

Momentum conservation

Jets & particle decays Termed "nonflow" Not collective phenomenon

arXiv:2101.10771

Two-particle correlations and non-flow

No clear nearside ridge

Need to remove nonflow

Momentum conservation

Jets & particle decays Termed "nonflow" **Not collective phenomenon**

arXiv:2101.10771

Non-flow removal in vA correlations

High-multiplicity (HM) correlation data

Low multiplicity (LM) template for jet/non-flow correlation

Nonflow subtraction

- HM fit with LM data and flow coef.
- HM and LM assumed to have same flow shape
- Different LM selection leads to similar results

$$Y^{\text{HM}}(\Delta\phi) = FY^{\text{LM}}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{3} v_{n,n}\cos(n\Delta\phi)\right\}$$

After nonflow subtraction clear $cos(2\Delta \phi)$ modulation

<u>v_n in photonuclear collisions</u>

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat $v_2(N_{ch})$ within statistical precision

v_n in photonuclear collisions

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat $v_2(N_{ch})$ within statistical precision

γA has significantly lower v₂ than *pp*

Consistent v_3 between γA and pp given large uncertainties on both

v_n in photonuclear collisions

Similar trend in $v_2(p_T)$ as other hadronic systems.

Similar low- p_T behavior as ppand p+Pb but systematically lower.

High- $p_T v_2$ is falling to large negative values (see backup) which is from the oversubtraction of nonflow. This effect is present in *pp* but is larger and sets in at lower p_T in γA (ATLAS-CONF-2020-018)

arXiv:2101.10771

(3+1)D hydrodynamic model comparison

Collectivity in Ultra-Peripheral Pb+Pb Collisions at the Large Hadron Collider

Wenbin Zhao,¹ Chun Shen,^{1,2} and Björn Schenke³

Final state

Viscous Hydrodynamics (3+1)D MUSIC+UrQMD

New y+Pb theory comparisons

Nonzero $\gamma Pb v_2$

comparison to 3DGlauber + MUSIC +UrQMD

Why is $v_2 (\gamma * Pb) < v_2 (pPb)$ Correlations performed in forward rapidity in γPb suppresses observed collectivity

arXiv:2203.06094

arXiv:2101.10771

Why is $\gamma Pb v_2$ smaller

- Correlations in small systems are performed with a rapidity gap between the particles
- The event plane can fluctuate between these rapidities, which decreases the observed v₂
- This effect is larger at forward rapidities.
- Because yPb is so boosted the "forward rapidities" are probes relative to other systems with the ATLAS detector.

Why is $\gamma Pb v_2$ smaller

- Correlations in small systems are performed with a rapidity gap between the particles
- The event plane can fluctuate between these rapidities, which decreases the observed v₂
- This effect is larger at forward rapidities.
- Because yPb is so boosted the "forward rapidities" are probes relative to other systems with the ATLAS detector.

Measurements of longitudinal decorrelation

- F_n is the fractional change in $v_{n,n}$ per a unit rapidity
- It characterizes longitudinal decorrelation effects well
- This class of measurements probes the shape of the initial state energy density
- First decorrelation measurement in small systems

arXiv:2308.16745

<u>3+1D Hydrodynamic model comparison in yA</u>

Changes in probe virtuality affects the shape of initial energy density No direct access to Q^2 in UPC γA

Azimuthal anisotropy in eA collisions?

- DIS: Point-like interaction region would suggest little geometry
- Photoproduction: photon mostly fluctuates to a vector meson and interacts hadronically with the target. This provides an energy deposit with a transverse extent and possible elliptic geometry.
- Q² range in the previous slide should be accessible by EPIC at the EIC

CGC model comparison

Color Glass Condensate model calculation containing **initial-state correlations** which gives rise to nonzero v_2

Correlated color domain size is ~ 1/Q_s

- Larger number of domains struck \rightarrow lower v_2
- Quasi-real photon is predicted to have large B_P

arXiv:2101.10771

QGP phase

Radial flow

Populating QCD degrees of freedom, strangeness

Strangeness enhancement in vA

- Strangeness enhancement, baryon anomaly, baryon stopping...
- Novel incoming quantum numbers in _yPb
- Plots of displaced vertex identified particle candidates in yPb

39

Identified particle <pT> in yA

• <pT> with _{Nch}

arXiv:2503.08181

- Higher energy density achieved in higher multiplicity collisions leads to stronger radial expansion.
- Thought of as a signature of QGP formation
- Larger <pT> in the Pb-going direction
- Qualitative agreement with the Hydro model excluding K_S⁰
 - Common in these new data-model comparisons

Behavior in data is consistent with qualitative picture of radial flow

Baryon anomaly in yA

Phys. Rev. Lett. 111, 222301

- Larger hydrodynamic push to baryons as the QGP velocity field cools into hadrons
- Observe large baryon enhancement at mid-pT in γA, similar to pPb
- Possibly see larger baryon enhancement in the Pb going direction

Baryon anomaly in yA

<u>arXiv:2503.08181</u>

- Larger hydrodynamic push to baryons as the QGP velocity field cools into hadrons
- Observe large baryon enhancement at mid-pT in γA, similar to pPb
- Possibly see larger baryon enhancement in the Pb going direction

Observe large baryon enhancement at mid-pT in yA, similar to pPb

Conclusion

Results

Photonuclear v_n has a similar order of magnitude and trends as other previously measured hadronic systems Intuitive property of hadronic-like photonuclear collisions (photon \rightarrow vector meson).

Theory comparisons

Quantitative agreement with hydrodynamic models which translates initial geometric anisotropy to final-state momentum anisotropy through final-state interaction e.g. hydro

Compared to schematic CGC calculation

New results in identified hadrons

New ATLAS measurements probing strangeness enhancement, baryon anomaly and radial flow

Future study

In Run 3 ATLAS has collected 2-3x more high-multiplicity γA data! Explore photon Q^2 and tunable probe size at the EIC

<u>Thank you</u>

Sum of gaps

Comparison to DPMJET-III

- DPMJET-III predicts the photon energy changes by about 1-2 standard deviations over the multiplicity range of the measurement and a doubling of the mean $W_{\rm vN}$ for 10 to 60 $N_{\rm ch}^{\rm rec}$.
- Large difference between measured $v_{n,n}$ before and after template nonflow subtraction for data and DPMJET-III.
- Small negative $v_{2,2}$ after template fit

CERN-EP-2020-246

More jet-like away side in DPMJET-III than in data. This produces the larger unsubtracted $v_{2,2}$ seen on the previous slide. Small remaining modulation after nonflow subtraction seen in the lower panel. DPMJET-III is of limited use in modeling the soft correlations in photonuclear events.

Purity of the photonuclear selection

- A two-component fit was performed (signal MC) + (background MC) to data distributions to determine the purity.
- The N_{ch} and $\Sigma_{\gamma} \Delta \eta$ distributions were used.
- A conservative approach was taken and the worst purities were used to assess possible effects.
- A pp Δφ correlation with the same selections was subtracted (according to the bins purity) from the photonuclear data as a systematic variation and the sensitivity is included in the final result.

Factorization $v_2(N_{ch})$

 $v_2(N_{ch})$ shows insensitivity to associated particle p_T range. This is consistent with a hydrodynamic paradigm where particle anisotropies are generated from a single-particle flow vector for all p_T .