Electroproduction of E Hyperons using CLAS12 at JLab

Bianca Gualtieri Florida International University Supervisor: Prof. Lei Guo

11th Workshop of the APS Topical Group on Hadronic Physics

Outline

Previous studies

- Photoproduction
- Electroproduction

Experimentally Studying Cascades at JLab

Preliminary Results

Hyperons in the Hadron Spectrum

- Compared to N's and $\Delta's$ states, hyperons have been less extensively studied
- As strangeness increases, knowledge about hyperon states decreases...

Number of well-established states:

• S = -1 : 14 Λ and 10 Σ

•
$$S = -2 : 6 \Xi$$

• $S = -3 : 2 \Omega^{-1}$

Cascades

- Doubly strange hyperon
 - $\Xi^{-}(ssd)$
 - Ξ^0 (ssu)
- $\Xi^{-}(1320)$ decays weakly
 - $\Xi^- \rightarrow \Lambda \pi^-$
 - $\tau = (1.639 \pm 0.015) \times 10^{-10} s$
 - Quantum numbers: $I(J^P) = \frac{1}{2} \left(\frac{1}{2}^+\right)$

Missing Cascade States

- From SU(3) symmetry, the total number of Ξ* states should be equal to the number of N* and Δ* states combined
- Constituent quark models predict 45 E states
 - Only 11 Ξ states are listed in the PDG
- We should see more Ξ states according to LQCD calculations as well

State, J^P		Predicted r	nasses (MeV)				
$\Xi_{\frac{1}{2}}^{+}$	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi^{*\frac{1}{2}^{-}}$	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	238
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385				
$\Xi^{*\frac{7}{2}}$	2355							
$\Xi^{*\frac{1}{2}^{+}}$	1840	2040	2100	2130	2150	2230	2345	
$\Xi^* \frac{3}{2}^+$	2045	2065	2115	2165	2170	2210	2230	227
$\Xi^{*\frac{5}{2}^{+}}$	2045	2165	2230	2230	2240			
$\Xi^{*\frac{7}{2}^{+}}$	2180	2240						

S. Capstick and N. Isgur. Baryons in a relativized quark model with chromodynamics. Phys. Rev. D, 34:2809–2835, Nov 1986

			Status as seen in —					
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2 +	****					Decays weakly	
$\Xi(1530)$	3/2+	****	****					
$\Xi(1620)$		**	**					
$\Xi(1690)$		***	**	***	**			
$\Xi(1820)$	3/2 -	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
$\Xi(2500)$		*		*	*		3-body decays	

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

** Evidence of existence is only fair.

Evidence of existence is poor.

Why Study Cascades?

- Most of our knowledge about Ξ's stems from kaon and hyperon beam experiments from the 1960's to 1990's
- Since the 2000's, high luminosity photo– and electro-production experiments have opened new avenues to study cascades
- Relatively narrow widths for well established states
- Production mechanism remains unclear
- Possible production mechanism is a two-step tchannel process through intermediate N* and Y* resonance

(K. Nakayama, Y. Oh, and H. Haberzettl. Photoproduction of Ξ off nucleons.

Phys. Rev. C, 74:035205, Sep 2006).

Previous Photoproduction Results

MeV(c²) 2500

2000

1500

1000

500

20

2.5

(qu

1.2 1.3

CLAS 2006 Nakayama et al

Counts/(5 |

2005: CLAS g6 (3.2 < $E_{\gamma} < 3.9 \ GeV$) provided the first-ever exclusive measurement of Ξ^- in $\gamma p \rightarrow K^+K^+\Xi^-$

J.W.Price et al. Exclusive photoproduction of the cascade hyperons

2007: CLAS g11 data (2.75 $< E_{\gamma} <$ 4.75 *GeV*), provided cross section results for Ξ^- (1320) and Ξ^- (1530)

M1:1.3223 ± 0.0001 o1:0.0067 ± 0.000

 $M2:1.5378 \pm 0.000$

σ2: 0.0105 ± 0.0011

³ 1.4 1.5 1.6 1.7 1.8 MM(K⁺K⁺) (GeV/c²)

4.5

N1: 7678 ± 173

2018: CLAS g12 expanded the kinematic region of study (W=3.3GeV) as well as increased statistics

L.Guo et al. Cascade production in the reaction $\gamma p \rightarrow K^+K^+(X)$ and $\gamma p \rightarrow K^+K^+\pi^-(X)$

E_v (GeV)

J.T. Goetz et al. Ξ^* Photoproduction from Threshold to W=3.3 GeV

GlueX Cascade Studies

- GlueX has recently presented on Cascade production (Hao Li, JLUO 2024)
- Extending the energy region of photoproduction data for $\Xi^{-}(1320)$ as well as first photoproduction measurement of $\Xi^{*-}(1690)$ and $\Xi^{*-}(1820)$

First time C.S. for $\Xi^{-}(1320)$ in Electroproduction (2024)

- Jose Carvajal, Ph.D. thesis "First Time Measurement of Ground State Ξ^- Hyperon Cross Section in Electroproudction"
- RG-A data ($E_{beam} = 10.2 \ GeV$, Inbending)

CLAS12 at Jefferson Lab

- CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12)
- Nearly 4π solid angle coverage
- 3 polar angle regions:
 - Very Forward (Forward Tagger)
 - $2.5^\circ \le \theta \le 4.5^\circ$
 - Forward (Forward Detector)
 - $5.0^\circ \le \theta \le 35^\circ$
 - Central
 - $35^\circ < \theta \le 125^\circ$

Experimental Conditions

Event Reconstruction

- Studying the exclusive reaction: $ep \rightarrow e'K^+K^+(\Xi^-)$
 - Reconstructing Ξ^- signal via missing mass technique
- All K^+ 's required to be in Forward Detector
 - For optimal tracking efficiency
- Electron in both the FD and FT are being analyzed
 - Forward Tagger ($E_{beam} = 7.5 \ GeV$):
 - $0.1 \le Q^2 \le 0.4 \ GeV^2$
 - Forward Detector region ($E_{beam} = 6.5 \text{ and } 7.5 \text{ GeV}$)
 - $0.5 \le Q^2 \le 2 \ GeV^2$
- Various selection cuts on timing, P, θ , ToF, χ^2_{pid} are applied

Kinematic Coverage Forward Detector

- Data are binned in Q^2
- Q^2 coverage ranges from ~ 0.15 2.0 GeV²
- Clear $\Xi^-(1320)$ signal
- $\Xi^{-}(1530)$ signal as well

Kinematic Coverage Forward Tagger

- Quasi-real photoproduction regime
- Very Forward
 - $(2.5^{\circ} \le \theta \le 4.5^{\circ})$
- Q^2 coverage from ~ 0.04 0.18 GeV²

Missing Mass Distribution (FT)

- Lowest yield out of all data sets
- Both signals are fitted to a gaussian
- Background fitted to 4th order polynomial

Missing Mass Distributions (FD)

- Highest yield out of all data sets is the eFD for $E_{beam} = 6.5 \ GeV$
- Both signals are fitted to a gaussian
- Background fitted to 4th order polynomial
 - Need a better understanding of background shape!

Understanding the Background

Mixed events background

Randomizing the lower momentum kaon and computing the missing mass

$$P_{miss}^{\mu} = P_{beam}^{\mu} + P_{target}^{\mu} - \left(P_{e}^{\mu} + P_{K_{1}^{+}}^{\mu} + P_{K_{i}^{+}}^{\mu}\right)$$

where $P_{K_{i}^{+}}^{\mu}$ is randomly selected

- Differs bin-by-bin in Q^2
- Worked well for previous electroproduction results

Mixed Events overall Q^2 range

- Shaded yellow represents the mixed events background
- Summary of Forward Tagger and Forward Detector at 7.5 GeV over full Q^2 range

Mixed Events bin-by-bin in $Q^2 ext{ eFD } E_{beam} = 6.5 ext{ GeV}$

$\Xi^{-}(1320)$ Yield

- All current available data from pass 2 RG-K is presented
- Reported at the bin-average
- Not acceptance corrected

Forward Detector Acceptance

• Acceptance:
$$\eta^i = \frac{N_{rec}}{N_{gen}}$$

- Does not account for uncertainties from the model
- Current acceptance is shown for equal weighing for s and t-channel production
- Forward Tagger acceptance is underway

Summary and Outlook

- Yield for ground state shows promising results
 - Potential to explore $\Xi(1530)$ as well
- Data compliments previous electroproduction results
 - Gap in FD Q^2 coverage is filled
- New run data is coming very soon with increased statistics!
 - Approximately 30% more statistics
- Cross section results coming soon!

Thank You!

Supported by: DE-SC0013620, This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0013620