

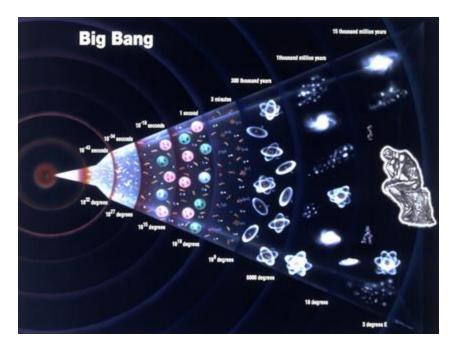
Search for the Axion-Like-Particles in the η meson decay with the HADES Detector

APS Topical Group on Hadronic Physics (GHP2025) Anaheim, March 15th, 2025

Marcin Zieliński

M. Smoluchowski Institute of Physics Jagiellonian University, Kraków, Poland

NATIONAL SCIENCE CENTRE


General motivation

The general and main motivation for research is to answer the question:

Why does the Universe exist?

More specific question for physicists:

How did our 'Material Universe' survive the cooling after the Big Bang?

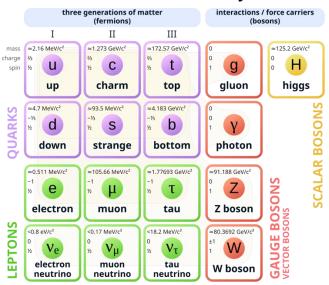
Big Bang:

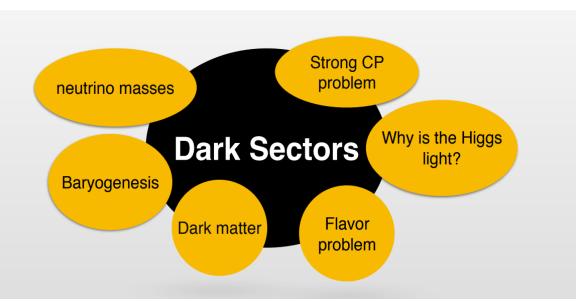
an equal amount of matter and antimatter was produced during the hot phase

During cooling and expansion

matter and antimatter annihilated 😐

Most of the cosmic energy/matter budget is of an unknown form




General motivation

Status of Standard Model in HEP:

- The Standard Model has served us well for 50 years!
- Recent measurements indicates SM can't be the final answer.
- Six categories of problems have arisen in SM.

Standard Model of Elementary Particles

General motivation

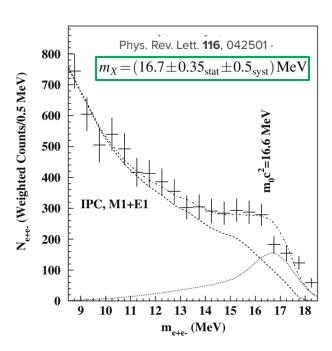
- In SM: violation from weak interaction is not sufficient to create observed asymmetry
- Parameter space for BSM is running out at HEP
- several anomalies in experiments point to possible new physics, weakly coupled to familiar matter in the 1MeV - 1 GeV scale

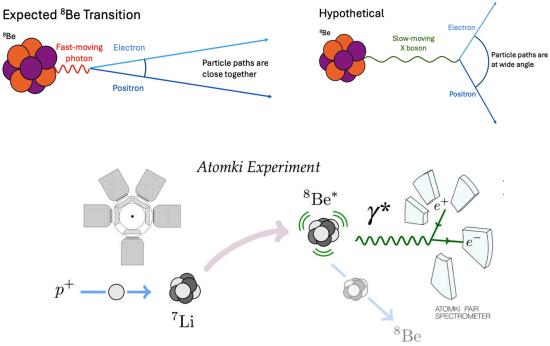
<u>Ref: Marco Battaglieri, arXiv:1707.04591</u> [hep-ph]

Newest theoretical models prefer gauge bosons in MeV-GeV mass range as "...many of the more severe astrophysical and cosmological constraints that apply to lighter states are weakened or eliminated, while those from high energy colliders are often inapplicable" (B. Batell, M. Pospelov, A. Ritz – 2009)

How we can try to address SM problems experimentally?

- Searching for new particles
- Studying violation of discrete symmetries

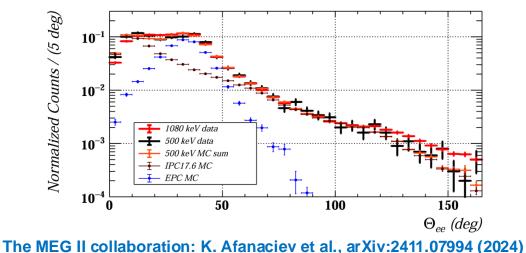


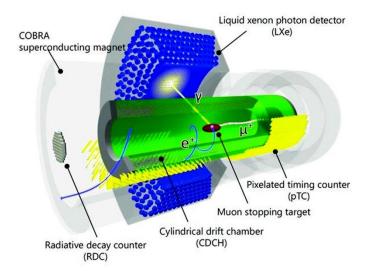


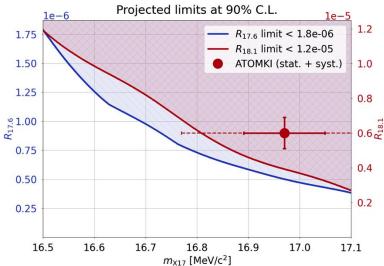
General motivation – ATOMKI results (X₁₇ boson)

The ATOMKI group observed an excess of e⁺e⁻ pairs emitted at large relative angle in the nuclear reactions:

³H(p, e⁺e⁻)⁴He, ¹¹B(p, e⁺e⁻)¹²C. ⁷Li(p, e⁺e⁻)⁸Be.

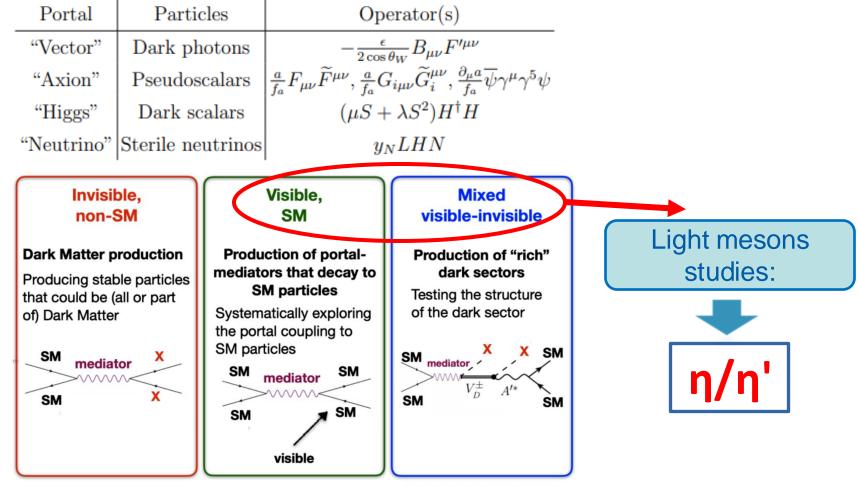

ATOMKI Exp. ⁸Be : anomalies in the internal pair creation of isovector (17.64 MeV, I=1) and isoscalar (18.15 MeV, I=0) magnetic dipole M1 transitions in ⁸Be





General motivation – MEG-II result (from 12.11.2024)

- MEG-II (PSI) experiment searches for charged lepton flavour violating decays $\mu^+ \rightarrow e^+ \gamma$.
- Experiment was adopted to search for X17 in the same reaction as ATOMKI: ⁷Li(p, e⁺e⁻)⁸Be (17.6 MeV and 18.1 MeV states).
- No significant evidence of the X₁₇ particle was found.
- Upper limits were set BR with respect to γ-ray emission: R_{18.1} < 1.2×10⁻⁵ and R_{17.6} < 1.8×10⁻⁶



Connection between Standard and Dark Matter

New Physics connects to Standard Model particles through four portals:

Stefania Gori, Mike Williams

Connection between Standard and Dark Matter

"Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders"

[G. Krnjaic RF6 Meeting, 8/2020]

The only known particles with all-zero quantum numbers: Q = I = J = S = B = L = 0 are the η/η' mesons and the Higgs boson (also the vacuum!) -> very rare

- The η meson is a Goldstone boson (the η' meson is not!)
- The η/η' decays are flavor-conserving reactions

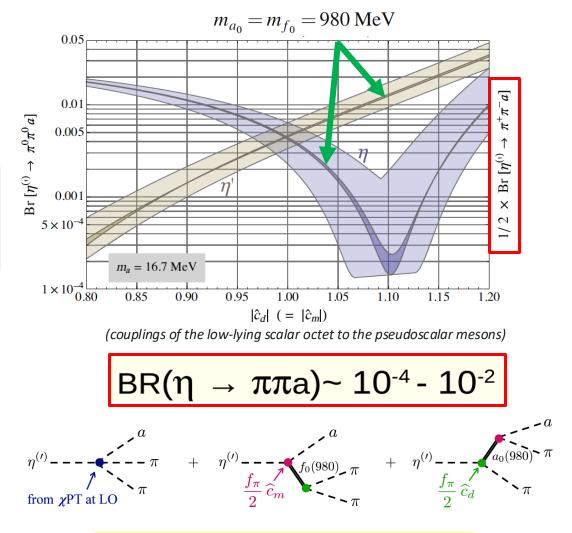
Experimental advantages:

•

- Hadronic production cross section is quite large (~ 0.1 barn) \rightarrow much easier to produce than heavier mesons
- All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance.
- EM decays are forbidden in lowest order by C invariance and angular momentum conservation Branching Ratio of processes from New Physics are enhanced compared to SM.

Axion-Like-Particles How to explain observed anomalies in view of existing experimental constrains for QCD Axion? **Piophobic QCD axion** Then in SM Lagrangian axionic phases Must be short lived (~10⁻¹³ s) and decay are directly ascribed to quark masses predominantly to e⁺ e⁻ $m_u \to m_u e^{i\gamma^5 q_{\rm PQ}^u a/f_a},$ $m_d \rightarrow m_d e^{i\gamma^5 q_{\rm PQ}^d a/f_a},$ $m_e \rightarrow m_e e^{i\gamma^5 q_{\rm PQ}^e a/f_a},$ QCD Axion couples predominantly to the first generation of SM fermions (PQ charges vanish for second and third SM fermions) $\frac{m_u}{m_d} \simeq \frac{Q_d^{\rm PQ}}{Q_u^{\rm PQ}} = \frac{1}{2}$ The a - π^0 mixing at the level of O(10⁻⁴) isovector Suppressed mixing-angle results in $m_{u,d} \ll m_s$ $\theta_{a\pi} \gg \theta_{an}, \theta_{an'}$ the isoscalar couplings of the axion isoscalar $\theta_{a\pi} \ll \theta_{an}, \theta_{an'}$ Ref: D. Alves et al., PHYS. REV. D 103, 055018 (2021)

Axion-Like-Particles


Hadronic decay channels of η and η' could be coupled to ALP's: $\eta \rightarrow \pi^+ \pi^- a \ (\rightarrow e^+ e^-)$

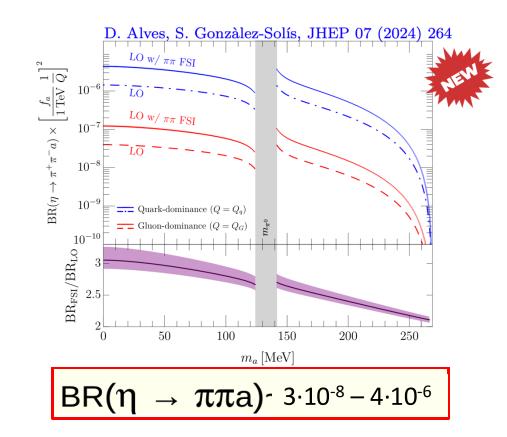
"axio-hadronic decay"

Using Resonance Chiral Theory (R_{\u03c0}T), the low-lying resonances should be included as degrees of freedom in the R_{\u03c0}T Lagrangian

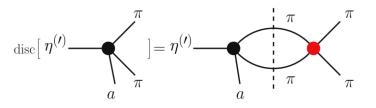
χPT predictions for decay rates significantly modified by inclusion of resonance exchange.

".... $O(10^{-2})$, is probably excluded or in tension with observations but $O(10^{-4} - 10^{-3})$ likely remains experimentally allowed, and within the sensitivity."

Ref: D. Alves et al., PHYS. REV. D 103, 055018 (2021)


Axion-Like-Particles

Hadronic decay channels of η and η' could be coupled to ALP's: $\eta \rightarrow \pi^+ \pi^- a (\rightarrow e^+ e^-)$ "axio-hadronic decay"


Using Resonance Chiral Theory (R_{\u03c0}T), the low-lying resonances should be included as degrees of freedom in the R_{\u03c0}T Lagrangian

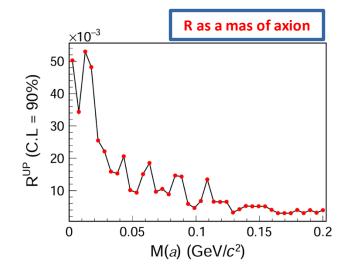
χPT predictions for decay rates significantly modified by inclusion of resonance exchange.

".... $O(10^{-2})$, is probably excluded or in tension with observations but $O(10^{-4} - 10^{-3})$ likely remains experimentally allowed, and within the sensitivity."

Effects of pion-pion final-state interactions (FSI)

φ

 η rest frame


Axion-Like-Particles

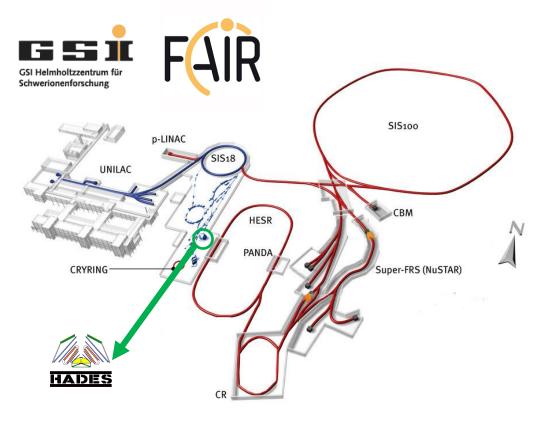
Why previous measurements $\eta(\eta') \rightarrow \pi^+ \pi^- e^+ e^- did$ not see Axion signatures ?

Experiments up to now focused on studies of CP invariance:

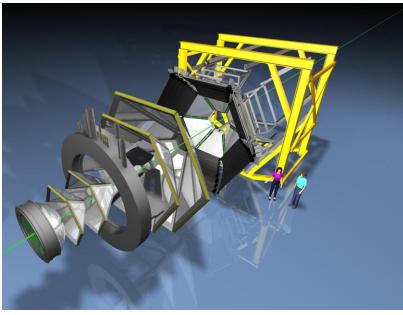
Year	Exp.	Events number	Asymmetry	BR ($\eta \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$)	
2009	KLOE-2	1555 \pm 52	(-0.6 \pm 2.5 _{stat} \pm 1.8 _{sys}) × 10 ⁻²	$(2.68 \pm 0.09_{stat} \pm 0.07_{syst}) \times 10^{-4}$	Rejected events m(e⁺e⁻) < 20 MeV
2016	WASA-at-COSY	251 ± 17	(-1.1 ± 6.6 _{stat} ± 0.2 _{sys}) × 10 ⁻²	$(2.7 \pm 0.2_{stat} \pm 0.2_{syst}) \times 10^{-4}$	(,
2007	WASA-CELSIUS	$\textbf{16.3} \pm \textbf{4.9} \pm \textbf{2.0}$		$(4.3 \pm 1.3_{stat} \pm 0.4_{syst}) \times 10^{-4}$	

BES III – Result for the $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ decay (also CP invariance studies):

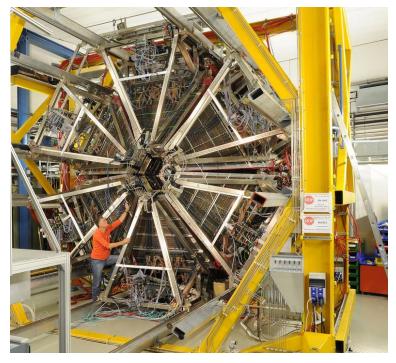
$$R^{\text{UP}} = \frac{\mathcal{B}(\eta \to \pi^+ \pi^- a) \cdot \mathcal{B}(a \to e^+ e^-)}{\mathcal{B}(\eta \to \pi^+ \pi^- e^+ e^-)}$$


$$(3.0 - 53.0) \times 10^{-3}$$

Ref: BESIII Col. arXiv:2501.10130v1 (2025)



HADES - High Acceptance Di-Electron Spectrometer



HADES - High Acceptance Di-Electron Spectrometer

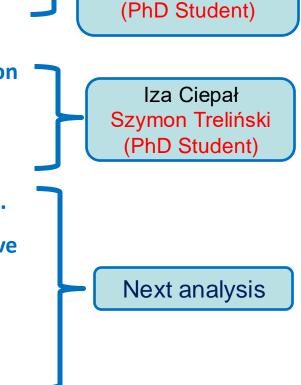

- START T0 reaction for ToF
- RICH Cherenkov detector (di-electron e⁺e⁻)
- MDC and STS track reconstruction
- Magnet Coil generates magnetic field


- ToF & RPC Time-of-Flight META detectors
- ECAL electromagnetic calorimeter (photons)
- Trigger logic based on InnerToF and Meta (very efficient and selective)

HADES - High Acceptance Di-Electron Spectrometer

February 2022 measurement:

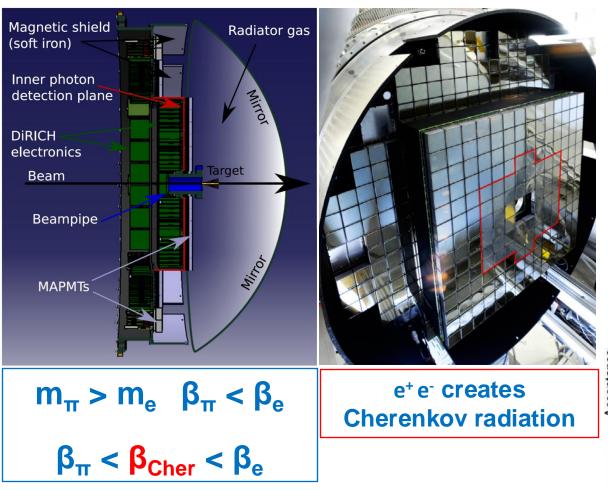
- proton proton (pp) collisions at energy of T = 4.5 GeV using liquid hydrogen target LH₂
- 28 days of measurement
- estimated total integrated luminosity 6.1 [pb⁻¹]

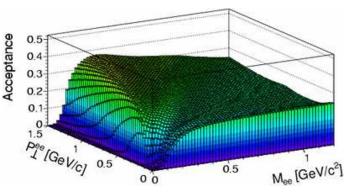

Marcin Zielinski

Krzysztof Prościński

Light $\eta, \, \omega, \, f_1$ mesons studies using HADES

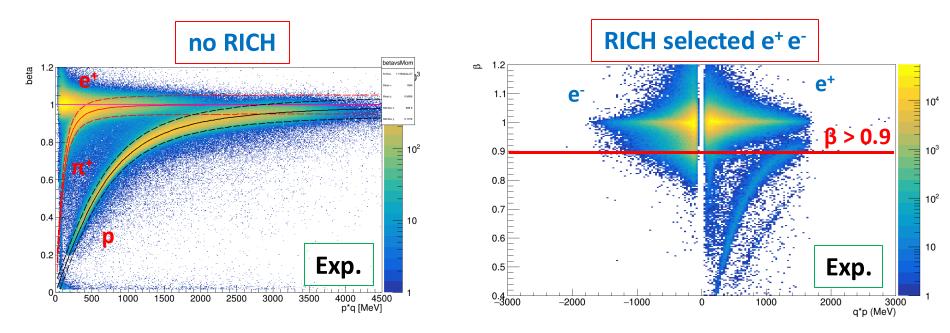
- Searches for Axion-Like-Particles $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ Decay *(this presentation)*
- Exclusive and inclusive production of η and ω in proton-proton collisions (production mechanism at intermediate energies, cross section extraction, angular distributions).
- Form Factor extraction for the $\eta \to \, \gamma \, e^{\scriptscriptstyle +} \, e^{\scriptscriptstyle -}$ and $\omega \to \, \pi^0 \, e^{\scriptscriptstyle +} \, e^{\scriptscriptstyle -}$.
- Studies of the f₁ meson production in proton-proton (exclusive cross section extraction).
- Studies of symmetries C and CP using η decays:


 $\eta \rightarrow \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -} \, e^{\scriptscriptstyle +} \, e^{\scriptscriptstyle -} \,, \, \eta \rightarrow \, \pi^0 \, e^{\scriptscriptstyle +} \, e^{\scriptscriptstyle -} \,, \,\, \eta \rightarrow \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -} \, \pi^0 \, .$



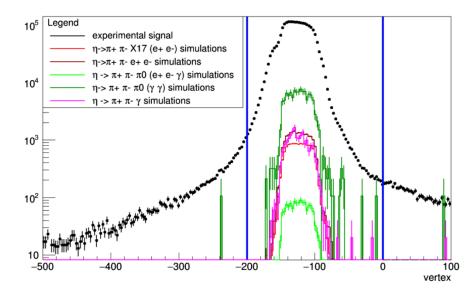
Lepton identification using HADES RICH Detector

- Lepton identification base on signals in RICH.
- Threshold momentum for electrons 9 MeV and for pions 2500 MeV.
- Acceptance as a function of transverse momentum and e⁺ e⁻ invariant mass.

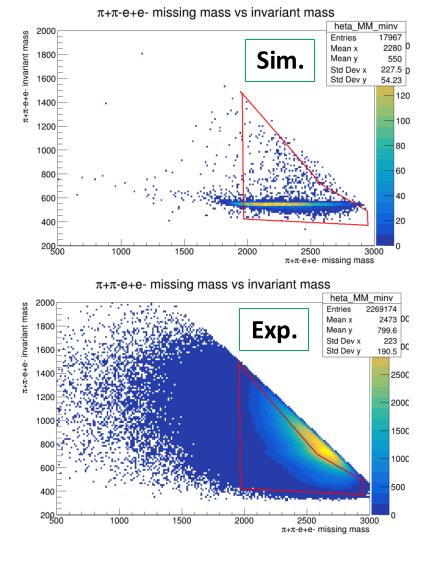


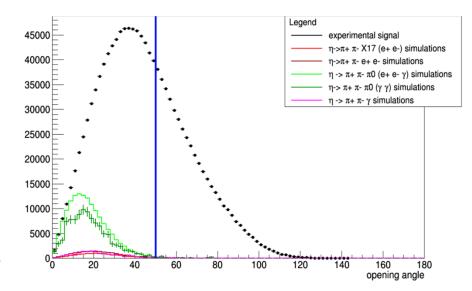
Ref.: M. Becker et al. Nucl. Inst. and Meth. A 1056:168697 (2023) Ref.: G. Agakishiev et al. Eur. Phys. J. A (2009) 41:243-277

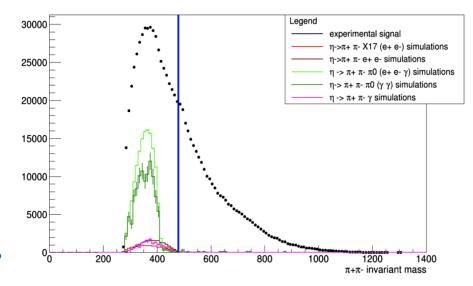
Particle selection and identification


Following particles have to be selected: $\pi^+ \pi^- e^+ e^-$

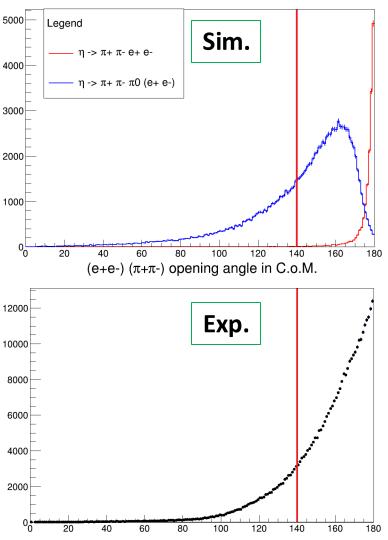
- leptons selected by correlation windows ($\theta_{RICH} \theta_{MDC}$) in RICH and MDC
- pions selected by cuts on beta vs momentum distribution
- additional cuts for leptons: β > 0.9


- vertexReco z ∈ (-200 mm, 0)
- π⁺ π⁻ e⁺ e⁻ missing mass vs inv. mass (graphical cut)
- (e⁺e⁻)(π⁺π⁻) opening angle < 50°
- $\pi^+\pi^-$ invariant mass < 480 MeV
- $(e^+e^-)(\pi^+\pi^-)$ opening angle in CM > 140°


- vertexReco $z \in (-200 \text{ mm}, 0)$
- π⁺ π⁻ e⁺ e⁻ missing mass vs inv. mass (graphical cut)
- (e⁺e⁻)(π⁺π⁻) opening angle < 50°
- π⁺π⁻ invariant mass < 480 MeV
- $(e^+e^-)(\pi^+\pi^-)$ opening angle in CM > 140°


- vertexReco $z \in (-200 \text{ mm}, 0)$
- π⁺ π⁻ e⁺ e⁻ missing mass vs inv. mass (graphical cut)
- (e⁺e⁻)(π⁺π⁻) opening angle < 50°
- $\pi^+\pi^-$ invariant mass < 480 MeV
- $(e^+e^-)(\pi^+\pi^-)$ opening angle in CM > 140°

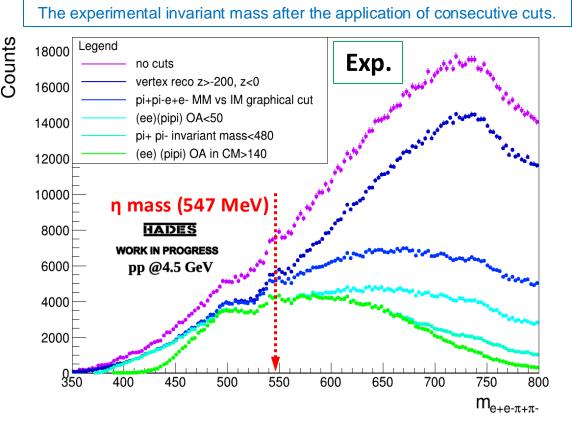
- vertexReco $z \in (-200 \text{ mm}, 0)$
- π⁺ π⁻ e⁺ e⁻ missing mass vs inv. mass (graphical cut)
- (e⁺e⁻)(π⁺π⁻) opening angle < 50°
- π⁺π⁻ invariant mass < 480 MeV
- $(e^+e^-)(\pi^+\pi^-)$ opening angle in CM > 140°



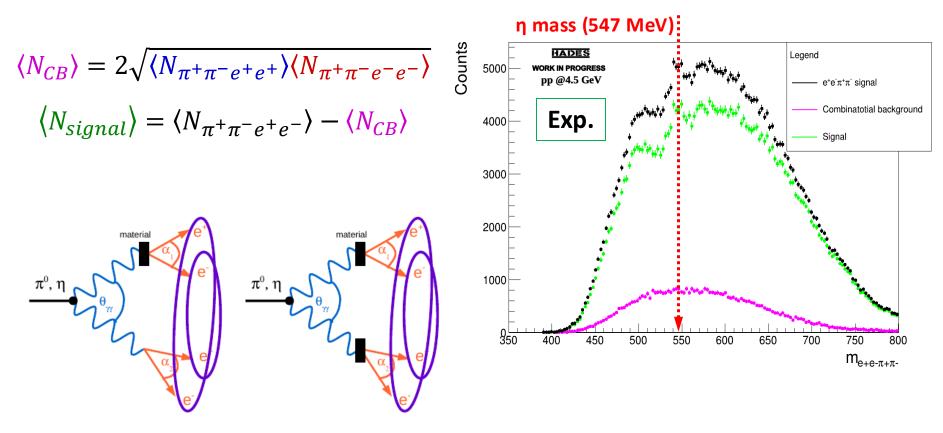
(e+e-) (π + π -) opening angle in C.o.M.

- vertexReco $z \in (-200 \text{ mm}, 0)$
- π⁺ π⁻ e⁺ e⁻ missing mass vs inv. mass (graphical cut)
- (e⁺e⁻)(π⁺π⁻) opening angle < 50°
- π⁺π⁻ invariant mass < 480 MeV
- (e⁺e⁻)(π⁺π⁻) opening angle in CM > 140°

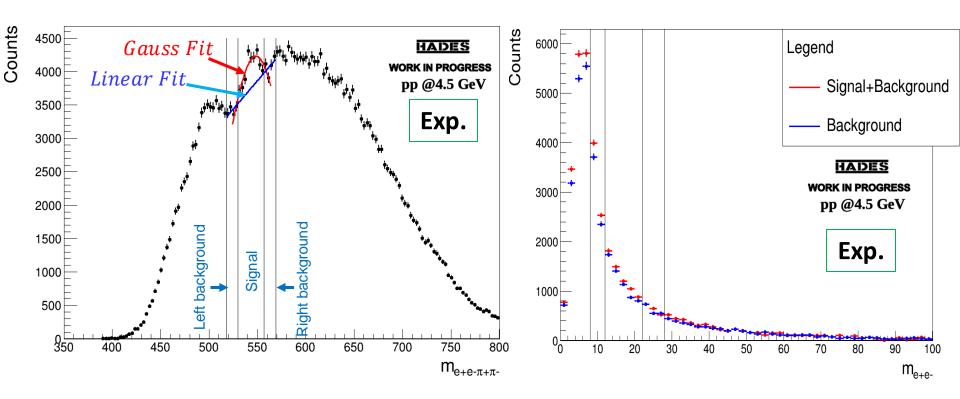
In CM frame OA found assuming $e^+e^-\pi^+\pi^-$ invariant mass is equal η mass



Event selection for the $\eta \to \pi^+ \, \pi^- \, e^+ \, e^-$ decay

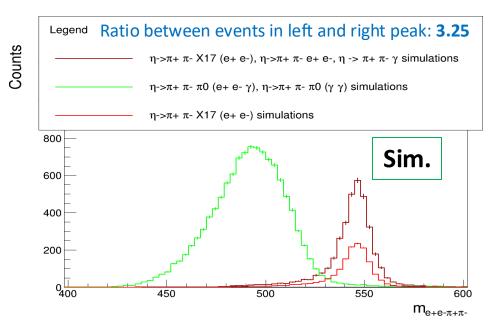

- all cuts were compared using e⁺e⁻π⁺π⁻ invariant mass
- Most of the multipion background was substracted
- reduction of 86.78% events in total range of e⁺e⁻π⁺π⁻ invariant mass distribution (data)
- reduction of 10.16% events in η signal range (simulations)

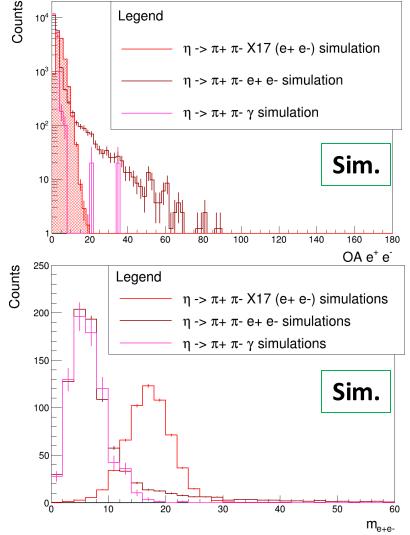
Combinatorial background substraction:



Ref.: Szymon Harabasz, HADES PhD Thesis (2018)

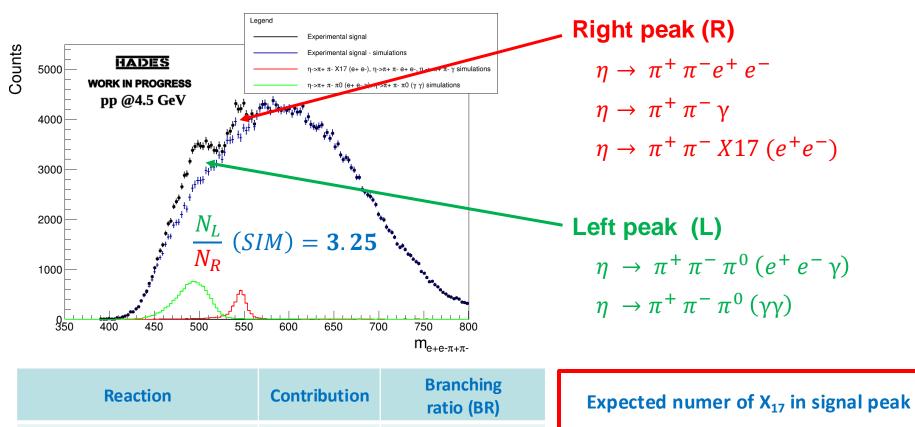
Extraction of $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ signal


Estimated numer of signal events	2758
η peak mean (MeV)	548.40
η peak sigma (MeV)	32.59



Simulations of signal and background

Signal and main background reactions:


 $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

 $\eta \rightarrow \pi^+ \pi^- X 17 (e^+ e^-)$

 $\eta \rightarrow \pi^+ \pi^- \gamma$

Estimation of X17 contribution to signal region

 $2.68 \cdot 10^{-4}$

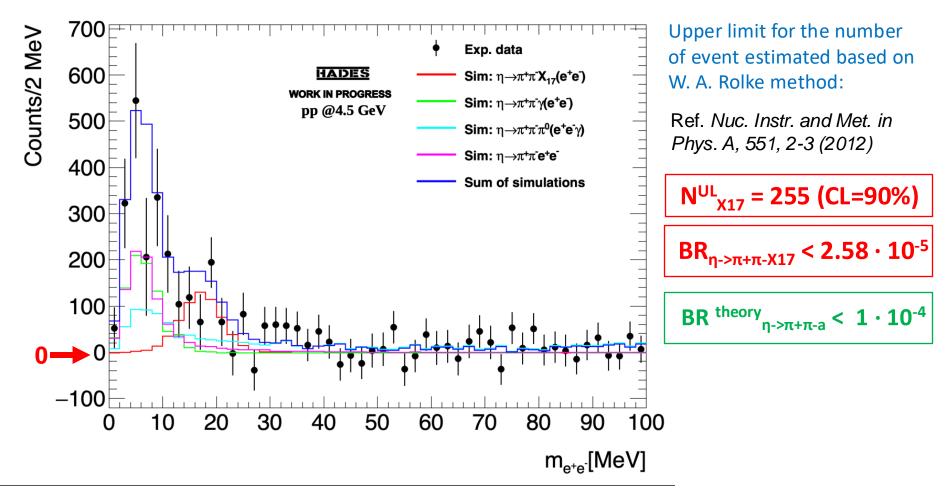
 $1 \cdot 10^{-4}$

 $4.28 \cdot 10^{-2}$

39.95%

26.28%

33.77%


$N_{X17} =$	$N_{ALL} \cdot f_{X17}$	
$N_{X17} = 2758$	· 26.28% =	725

HADES

Results

- Final distribution of e⁺e⁻ invariant mass after background subtraction
- Estimated total efficiency and acceptance factor: 1.1 10⁻³

Conclusions

- η/η' mesons are an interesting place to look for dark particles because probe coupling to light quarks and gluons.
- Preliminary estimation of upper limit for the Axion-Like-Particle in decay $\eta \rightarrow \pi^+ \pi^- e^+ e^- BR < 2.58 \cdot 10^{-5}$

Further steps:

- Studies of systematical effects
- More detailed simulations of η decays and background using transport models SMASH/GiBUU
- Application of Machine Learning techniques (MVA, BDT) to reduce background

Thank you for your attention!