Pentaquark Search through J/ψ Measurements at Jefferson Lab

The 11th workshop of the APS Topical Group on Hadronic Physics (GHP2025)

Anaheim, CA March 14, 2025

Burcu Duran

Pentaquark analysis (this talk)

- tomorrow at room 255)

Proton mass radius from Gravitational Form Factors (Sylvester Joosten's plenary talk at 8:30 am

Understanding the Fundamental Building Blocks of Visible Matter

ct	r	0	r	۱

- protons and neutrons (nucleons) are the main building blocks of visible matter in the universe
- nucleon isn't static but has a complex and dynamic structure

- •nucleon: strongly interacting relativistic bound state of quarks and gluons (partons)
- how do quarks and gluons give rise the fundamental properties of nucleons: mass, spin, charge etc.?

Confined States of Quarks and Gluons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc....

Phys. Lett. 8 (1964) 214

But they are not the only states permitted by the QCD

AN SUZ MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

G.Zweig *) CERN - Geneva

Discovery of LHCb Charm Pentaguarks

R. Aaij et al. (LHCb) (2015) **PRL 115-7**

Update on LHCb Charm Pentaquarks

R. Aaij et al. (LHCb) (2019) PRL 22, 222001

- 10x more data than 2015
- New *P_c* state: *Pc(4312)*+
- Narrow Pc(4450)⁺ from 2015 data resolved into 2 narrower peaks: Pc(4440)⁺ and Pc(4457)⁺.
- All three Pc candidates are still in the energy range of the $J/\psi 007$ experiment.

LHCb Charm Pentaguarks: A Resonance or Else?

1a) pentaguarks: tightly bound 5-quark

Case 1a: Clear visible signal expected in *photo-production*.

Case 1b: Small overlap of their wave functions with $J/\psi p$ in *photo-production.* Coupling is slightly suppressed.

Case 2: Not possible in *photo-production*.

An Experimental Perspective: J/ψ Production near Threshold

- Proton charge radius mainly carried out by charged moving quarks
 - electromagnetic probe to study proton charge radius \blacklozenge
- Proton mass distribution mainly carried out by gluons and gluons have NO charge!

- J/ψ production near threshold to probe gluons
- Sensitive to the gluonic structure of the proton:
- only couples to the gluons, not light quarks!
- Mandelstam variable t for the momentum transfer from photon to J/ψ

J/w Production: Current Data Status

- Well constrained high energy region
- Scarce in the energy range of interest i.e. near threshold region

J/ψ Experiments at Jefferson Lab 12 GeV Era

Hall D - GlueX the first J/ψ measurement at JLab A. Ali *et al.*, PRL 123, 072001 (2019)

Hall B - CLAS12 has experiments to measure TCS + J/ψ in photoproduction as part of Run Groups A (hydrogen) and B (deuterium): E12-12-001, E12-12-001A, E12-11-003B

Hall C has the J/ψ -007 experiment (E12-16-007) to search for the LHCb hidden-charm pentaquark

Hall A has experiment E12-12-006 at **SoLID** to measure J/ψ in electro- and photoproduction, and an LOI to measure double polarization using SBS

GLUEX 2019 Results

- 1D limits on $\sigma(\gamma p \rightarrow Pc) \times \Gamma(Pc \rightarrow J/\psi p)$: 4.6nb, 1.8nb, and 3.9nb at 90% confidence level.
- Assuming spin-parity 3/2- for all 3 states, $\Gamma(Pc(3/2-) \rightarrow J/\psi p)$: 4.6%, 2.3%, and 3.8%.

- 2019 GlueX exclusive photo-production total cross section (CS).
- High CS values compared to the old data
- Shows a trend less steeper than as expected with 2gluon exchange mechanism.
- Combined 2 gluon + 3 gluon fit.

Hall C during $J/\psi - 007$ Experiment

8.5% RL copper radiator

Experimental target

- *4 kinematic settings to measure both t- and s-channel processes.
- *Settings were optimized for enhanced sensitivity at higher t region to the s-channel resonant production measurement.

*SHMS (-) POLARITY and HMS (+) POLARITY

	SHMS P(GeV)	SHMS Ø (deg)	HMS P (GeV)	HMS Ø (deg)	
KIN 1	4.835	17	4.95	19.1	high-E/low-t
KIN 2	4.3	20.1	4.6	19.9	mid-E/low-t
KIN 3	3.5	30	4.08	16.4	high t
KIN 4	4.4	24.5	4.4	16.5	medium t

Higher-*t* region where the sensitivity is maximum for the pentaquarks (Hall C, high luminosity!)

High Luminosity and Enhanced Sensitivity to Resonant process in Hall C

Background t-channel production: forward peaked

d **Signal s-channel production:** decays isotropically

Different angular (t) dependences:

t-channel: exponential like - drops with *t*.
s-channel: isotropic (flat across same t range)

Maximize S/B at higher t region!!!

J/ψ Invariant Mass & Background Subtraction

Possible BG considerations:

- $e^{-}\pi^{+}$, $\pi^{-}\pi^{+}$ and $e^{-}e^{+}$.
- $e^{-}\pi^{+}$ is dominant and $\pi^{-}\pi^{+}$ or $e^{-}e^{+}$ negligible.
- Measured the background!
 - Potential BG reactions available in the data sample due to the no PID trigger.

BG Event Selection:

- Coincidence $e^-\pi^+$ background selected using electron PID in the SHMS and pions in the HMS.
 - electrons: SHMS Calorimeter
 - **pions:** HMS Calorimeter + HMS Cherenkov

• Fit BG shape to the sidebands of the signal to obtain the BG scale.

Pentaguark Signatures at $J/\psi - 007$

What would the three pentaguark resonances look like at our two higher-t kinematic settings?

JPacPhoto + SIMC

• Two higher mass Pc states are predicted to be indistinguishable due to the radiative effects, detector simulation and statistically driven binning at $J/\psi - 007$ kinematics.

at GlueX 90% confidence level

t-channel is suppressed at higher t region. Potential Pc signals are distinguishable from *t*channel.

Pentaguark Results from J/ψ -007 Experiment

3 different fits on data:

Fit 1: Gaussian shape used for the tchannel description.

Fit 2: Gaussian shape + "predicted" Pc states using GlueX upper limits at 90% confidence interval. Large resonances do not constrain the data at higher t settings (3 and 4)

Fit 3: Gaussian shape + "predicted" Pc states at determined $J/\psi - 007$ upper limits at 90% confidence interval.

Gaussian curve for t-channel only constrains data very well Data isn't consistent with the LHCb's pentaquark observation

Pentaguark Results from J/ψ -007 Experiment

- experiment's data at the peaks where these candidates are expected to appear.
- indicates the $J/\psi 007$ upper limits almost one order of magnitude smaller.

- No evidence for LHCb's pentaguarks!

• The upper limit for each case represent the cross sections extracted from the $J/\psi - 007$ • The upper limit comparison between $J/\psi - 007$ and GlueX results at 90% confidence level

• Molecular state interpretation: the cross section in photo production not quite settled yet.

Analysis of Muon Channel J/y Decay

Dipion events are the main background

Count

- data
- Take cut around MIP peak. In later settings, use MIP peak cut to remove $\pi+\pi$ events from $\mu+\mu$ sample

• In setting 1 data, use Cherenkov detector to distinguish $\mu+\mu$ - and $\pi+\pi$ - events. Then, plot histogram of calorimeter

P_cal_etrack

Energy (GeV)

Analysis by Jackson Swartz (U. Of Chicago)

BACKGROUND SUBTRACTION

• Calorimeter cuts remove some, but not all π + π - events

J/ψ Mass (GeV/c^2) Background subtraction method. Fit pion histogram to muon histogram and subtract out. Finally, take cut around J/Ψ mass peak to obtain the Subtracted Signal.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

• Plot reconstructed J/ Ψ invariant mass histograms for muon and pion samples:

²¹ Analysis and slide by Jackson Swartz (U. Of Chicago)

Analysis of Muon Channel J/w Decay

Differential cross sections obtained from muon and electron analyses agree:

do/dtdE

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

```
Argonne 🕰
```

²² Analysis and slide by Jackson Swartz (U. Of Chicago)

Photon Energy (GeV)

Summary

- No evidence for LHCb's pentaquarks!
- Molecular state interpretation: the cross section in photo production not quite settled yet.
- Muon analysis is almost completed!

23

BACK UP SLIDES

States (P_c)	mass (MeV)	width(MeV)	significance (σ)
$P_{c}^{+}(4380)$	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	9σ
$P_c^+(4450)$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	12σ

P_c States	mass (MeV)	width(MeV)	significance (σ)
$P_c^+(4312)$	$4311.9 \pm 0.7 \pm ^{6.8}_{0.6}$	$9.8 \pm 2.7 \pm ^{3.7}_{4.5}$	7.3σ
$P_c^+(4440)$	$4440.3 \pm 1.3 \pm ^{4.1}_{4.7}$	$20.6 \pm 4.9 \pm ^{8.7}_{10.1}$	5.4σ
$P_c^+(4457)$	$4457.3 \pm 0.6 \pm ^{4.1}_{4.7}$	$6.4 \pm 2 \pm {}^{5.7}_{1.9}$	5.4σ

SCALE AND SYSTEMATIC UNCERTAINTIES

SOURCE

total charge for normalization rate dependent efficiency other efficiency corrections spectrometer acceptance target wall subtraction electroproduction subtraction residual delta- y target dependence radiator thickness - Bremsstrahlun

Point to Point Systematic Uncertainty Mostly from background subtraction, radiative effects in generator and material effects in simulation

DOMINATED BY STATISTICAL UNCERTAINTIES!

	UNCERTAINTY
	1%
	1%
	< 1%
	3%
	1%
	1%
e correction	1%
g spectrum	1%
	4%

inelastic *t*-channel ($\gamma p \rightarrow J/\psi p \pi$)

- Threshold at 9 GeV
- Reconstructed photon energy <u>*E*rc</u> is ~1 GeV too low
- less than 30% of the elastic *t*-channel background
- not an issue for the $P_c(4450)$ ($E_{rc} > 9.7 GeV$)!

• Contaminates the 8 GeV < E_{rc} < 9.7 GeV range for a photon end-point energy of 10.7

PHOTON ENERGY RECONSTRUCTION Initial photon energy can be unambigously reconstructed from the reconstructed J/ψ momentum and energy

Assumptions

- ★ proton target at rest
- ★ photon beam along the z axis
- **\star** proton and J/ψ are the two final state particles

$$E_{\gamma} = \frac{1}{2(E_{\psi} - E_{\psi})}$$

 $M_{\psi}^2 - 2E_J M_P$ $- M_p - P_{\psi} \cos \theta_{\psi})$