

OLD DOMINION UNIVERSITY

In-medium nucleon Structure Functions through tagged Deep Inelastic Scattering with the LAD experiment

Carlos Ayerbe Gayoso On behalf of the LAD experiment group

Structure Functions

Structure functions describe how the momentum of a nucleon is distributed among its quarks and gluons, as probed in deep inelastic scattering (DIS).

For example, F^2 represents the quark momentum distribution and is directly related to the probability of finding a quark carrying a fraction x of the nucleon's momentum.

A very complete description of colliniear Structure Functions, early evening today: S. Kuhn - Nucleon structure in the extreme valence region

The EMC Effect

Aubert et al., PLB (1983)

- Discovered 1983>40 years
 - >1,000 papers
- SF bound nucleon ≠
 SF free nucleon

The EMC Effect

Schmookler et al., Nature (2019)

- Present in all nuclei
- No consensus on a theoretical explanation

Mean-field Modification

All nucleons modified equally

Larger bound proton radius

Mean-field Modification

All nucleons modified equally

Larger bound proton radius

SRC Modification

Virtuality-dependent modification → SRCs are highly virtual

Short Range Correlations:

- High Momentum States
 - ~20% of nucleons
- Back-to-back momentum

Patsyuk and Kahlbow et al., Nature Physics (2021)

Short Range Correlations:

- High Momentum States
 - ~20% of nucleons
- Back-to-back momentum
- Mostly np pairs

Short Range Correlations:

- High Momentum States
 - ~20% of nucleons
- Back-to-back momentum
- Mostly np pairs
- Deuteron-like scaling

Korover and Denniston et al., PRC Lett. (2023)

Slides courtesy of L. Ehinger

SRC Modification is well supported

There is a **high correlation** between the EMC effect strength and

the probability of a nucleon to be part of SRC pairs for a given nuclei. 27 AI/2D -dR_{EMC}/dx $(\sigma_A/A)/(\sigma_D/2)$ Published Data (SLAC) χ^2 / ndf 4.895/5 +Published Data (II ab) 0.4p0 -0.08426 ± 0.003869 208 Pb/2D 56 Fe/2D 0.3 0.2 B. Schmookler et al. (CLAS collaboration), 0.2 0.4 0.5 0.3 0.6 0.2 0.4 Nature 566, 354 (2019) B. Schmookler et al. (CLAS collaboration), $^{12}C/^{2}D$ 27 AI/2D Nature 566, 354 (2019) $\sigma_{A}(A)/(\sigma_{D}/2)$ 0.0 -0.1 2 5 6 $a_2(A/d)$ L. B. Weinstein et al., PRL 106, 052301 (2011) ⁵⁶Fe/²D ²⁰⁸Pb/²D O. Hen et al., PRC 85, 047301 (2012) X_B 14

LAD will test the EMC-SRC hypothesis

- Spectator-tagged DIS d(e,e' p_s)X
- tag protons in 300–600 MeV/c range
- new Large Acceptance Detector
- Learn about the partonic structure of nucleons in SRCs

Spectator Tagged DIS

EMC-SRC tagged experiments at JLab

17

LAD kinematic coverage

18

LAD Experimental Settings

- 11 GeV, 1 µA electron beam
- 20 cm liquid deuterium target
- Detect electrons in SHMS and HMS
 - Angles: 13.5°, 17°
- Detect protons in GEMs and LAD
- 0.3 < x' < 0.6
- 34 beam days

LAD Experimental Settings

CAD drawings – Hall C+LAD

PRAD GEMs

- 2 GEMs next to scattering chamber
- <1m away from target
- Active area: 120 x 55 cm²
- Separated by 20cm

Thanks to: Huong Nguyen (UVa), Ching Him Leung (Jlab), Asar Ahmed (UVa), Vimukthi Gamage (UVa), Xinzhan Bai (JLab)

PRAD GEMs

LAD (Hodoscope)

CLAS 6 TOF scintillators refurbished at ODU

E.S.Smith – NIMA 432 (1999)

Simulation

SimC will be used for electrons

d(e,e'p)X - Expected Results

Melnitchouk, Sargsian, Strikman, Z.Phys. A359, 99 (1997) 27

"With many contributions from UVa, the Hall C staff and assistance from MSU"

THANK YOU

LAD in some links

- Large Area/Acceptance Detector (LAD) experiment (E12-11-107) Proposal. PAC 38, Aug 2011
 - Jeopardy June 21, 2021
- Experimental Readiness Review July 29, 2020
- A. Schmidt LAD experiment in Hall C. Oct 19, 2021
- Hall C Meeting 2022 O. Hen The LAD Experiment: "In Medium Nucleon Structure Functions, SRC, and the EMC effect"
- Hall C Meeting 2022 F. Hauenstein The LAD Experiment: Status and Preparation
- Hall A/C Meeting 2023 F. Hauenstein Tagged DIS measurement with LAD
- Hall C Meeting 2025 L. Ehinger Measuring in-medium nucleon modification throug h spectator tagged DIS with the LAD experiment

MANDATORY BACKUP SLIDES

Run plan:

6 PAC days: Commission, calibration 34 PAC days: Physics runs

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition
Beam setup	 Sending beam to the Hall Detector checking: scintillator, TOF, GEMs, spectrometers 	2 shifts	6.6 GeV, 1uA
Low energy calibration	 Target LH2, elastic run for momentum calibration, and inclusive cross-section SHMS at 17° and 5.048 GeV HMS at 21.73° and 4.4 GeV Delta-scan for momentum calibration (HMS: +/- 3%, 6%, 	3 shifts	6.6 GeV, 10uA
		Slide c	ourtesy of D
	9%), (SHMS: -13%, -10%, -5%, 5%, 10%, 15%, 20%)		6

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition	
3 pass -> 5 pass	- Beam checkout	1 shift		
Multi-foil target run	 HMS to 13.5° and 4.4 GeV SHMS to 17° and 4.4 GeV Doing GEM alignment 	3 shifts	10.9 GeV 1 uA	
	 Install sieve and turn GEM off for optic calibration run 	3 shifts	10 uA	
Luminosity scan	 Move to LD2 target and run with different currents to do luminosity scan for efficiency and luminosity check 	1 shift	0.5, 0.7, 1.2, 1.5 uA	
BCM calibration	 2-3 times during run (needs other halls off) 	1 shift	0.2 – 2uA	
Physics run setting 1	Target LD2HMS at 13.5° and 4.4 GeV	13 days	1 uA	
	- SHMS at 17° and 4.4 GeV		Slide courtesy	of D. Nguyer
	- Dummy runs	~ 5% time		
			7	

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition			
Physics run setting 2	 Target LD2 HMS at 17° and 4.4 GeV SHMS at 17° and 4.4 GeV Dummy runs 	8 days ~ 5% time	1uA			
Physics run setting 3	 Target LD2 HMS at 17° and 4.4 GeV SHMS at 13,5° and 4.4 GeV Dummy runs 	13 days ~ 5% time	1uA			
6 PAC days: Commission, calibration 34 PAC days: Physics runs						
Move of SHMS with people in hall due to GEMs and SHMS cables						
Surveys before and after run			Slide courtesy			

LAD objective

Measuring the in-medium neutron SF (related to EMC effect) at large momentum (SRC signature) tagging the recoil proton, offers an excellent test of the EMC-SRC hypothesis

The simplest nucleus to test is Deuterium

The Large Area Detector (LAD) Experiment was designed to investigate spectator Tagged-DIS (TDIS) involving **high-momentum nucleons** in deuterium. Its aim was to offer fresh perspectives on the overall origin of the EMC effect and, more specifically, **to assess the hypothesis** suggesting that the EMC Effect in nuclei primarily results from the modification of nucleons within short-range correlated (SRC) pairs.

Scattering Chamber with current pictures

Target Ladder

- LH2
- LD2
- Empty/Dummy target for wall subtraction
- C-Multifoil (5-6) for optics
- Usual solid target for beam checkout

Modified HAPPEX cell to accommodate LAD acceptance

- 20 cm length
- 2 cm width
- 2 cm height

Fabrication by JLab target group

